ﻻ يوجد ملخص باللغة العربية
We develop a numerical scheme to investigate the high-order harmonic generation (HHG) in intense laser-matter interactions. Tracing the time evolution of every electronic laser-field-free state, we observe the HHG in a time-integrated quantum transition picture. Our full-quantum simulations reveal that continuum electrons with a broad energy distribution contribute equally to one harmonic and the excited state also plays an important role in the molecular HHG. These results imply a laser-intensity-dependent picture of intramolecular interference in the HHG.
We investigate high-order harmonic generation in inhomogeneous media for reduced dimensionality models. We perform a phase-space analysis, in which we identify specific features caused by the field inhomogeneity. We compute high-order harmonic spectr
We study the effect of Coulomb potential on high-order harmonic generation (HHG) numerically and analytically. We focus on the influence of Coulomb potential on emission times of HHG associated with specific electron trajectories. By using a numerica
Electron quantum path interferences in strongly laser-driven aligned molecules and their dependence on the molecular alignment is an essential open problem in strong-field molecular physics. Here, we demonstrate an approach which provides direct acce
We investigate the role of excited states in High-order Harmonic Generation by studying the spectral, spatial and temporal characteristics of the radiation produced near the ionization threshold of argon by few-cycle laser pulses. We show that the po
We investigate how short and long electron trajectory contributions to high harmonic emission and their interferences give access to intra-molecular dynamics. In the case of unaligned molecules, we show experimental evidences that the long trajectory