ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a new length preserving curve flow for convex curves in the plane. We show that the global flow exists, the area of the region bounded by the evolving curve is increasing, and the evolving curve converges to the circle in C-infinity topology as t goes to infinity.
In this article we consider the length functional defined on the space of immersed planar curves. The $L^2(ds)$ Riemannian metric gives rise to the curve shortening flow as the gradient flow of the length functional. Motivated by the triviality of th
We consider the quermassintegral preserving flow of closed emph{h-convex} hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function $f$ of the princ
We consider the flow of closed convex hypersurfaces in Euclidean space $mathbb{R}^{n+1}$ with speed given by a power of the $k$-th mean curvature $E_k$ plus a global term chosen to impose a constraint involving the enclosed volume $V_{n+1}$ and the m
In this paper, we study flows of hypersurfaces in hyperbolic space, and apply them to prove geometric inequalities. In the first part of the paper, we consider volume preserving flows by a family of curvature functions including positive powers of $k
We show that any initial closed curve suitably close to a circle flows under length-constrained curve diffusion to a round circle in infinite time with exponential convergence. We provide an estimate on the total length of time for which such curves