ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles study of electronic band structure and elastic properties of superconducting nanolaminate Ti2InC

158   0   0.0 ( 0 )
 نشر من قبل Igor Shein
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The full-potential linearized augmented plane wave method with the generalized gradient approximation for the exchange-correlation potential (FLAPW-GGA) is used to predict the electronic and elastic properties of the newly discovered superconducting nanolaminate Ti2InC. The band structure, density of states and Fermi surface features are discussed. The optimized lattice parameters, independent elastic constants, bulk and shear moduli, compressibility are evaluated and discussed. The elastic parameters of the polycrystalline Ti2InC ceramics are estimated numerically for the first time.



قيم البحث

اقرأ أيضاً

The electronic band structure and elastic properties of the Cd${}_{16}$Se${}_{15}$Te solid state solution in the framework of the density functional theory calculations are investigated. The structure of the sample is constructed on the original bina ry compound CdSe, which crystallizes in the cubic phase. Based on the electronic band structure, the effective mass of electron, heavy hole, light hole, spin-orbit effective masses and reduced mass in G point are calculated. In addition, the exciton binding energy, refractive index and high-frequency dielectric constant are calculated. The Young modulus, shear modulus, bulk modulus and Poisson ratio are calculated theoretically. Based on the results of elastic coefficients, the value of acoustic velocity and Debye temperature is obtained.
Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010] and [001] directions. The three methods agree well with each other, the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters.
119 - V.V. Bannikov 2014
The structural, elastic, magnetic properties, as well as electronic structure and chemical bonding picture of new oxide 3d1-perovskite BaVO3, recently synthesized, were systematically investigated involving the first-principles FLAPW-GGA calculations . The obtained results are discussed in comparison with available experimental data, as well as with those obtained before for isostructural and isoelectronic SrVO3 perovskite.
Density Functional Theory calculations have been performed to obtain lattice parameters, elastic constants, and electronic properties of ideal pyrochlores with the composition A$_2$B$_2$O$_7$ (where A=La,Y and B=Ti,Sn,Hf, Zr). Some thermal properties are also inferred from the elastic properties. A decrease of the sound velocity (and thus, of the Debye temperature) with the atomic mass of the B ion is observed. Static and dynamical atomic charges are obtained to quantify the degree of covalency/ionicity. A large anomalous contribution to the dynamical charge is observed for Hf, Zr, and specially for Ti. It is attributed to the hybridization between occupied $2p$ states of oxygen and unoccupied d states of the B cation. The analysis based on Mulliken population and deformation charge integrated in the Voronoi polyhedra indicates that the ionicity of these pyrochlores increases in the order Sn--Ti--Hf--Zr. The charge deformation contour plots support this assignment.
First principles study of structural, elastic, and electronic properties of the cubic perovskitetype BaHfO$_3$ has been performed using the plane wave ultrasoft pseudo-potential method based on density functional theory with revised Perdew-Burke-Ernz erhof exchange-correlation functional of the generalized gradient approximation (GGA-RPBE). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (emph{C}$_{11}$, emph{C}$_{12}$, and emph{C}$_{44}$), bulk modules emph{B} and its pressure derivatives $B^{prime}$, compressibility $beta$, shear modulus emph{G}, Youngs modulus emph{Y}, Poissons ratio $ u$, and Lam{e} constants ($mu, lambda$) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO$_3$. The band structure calculations show that BaHfO$_3$ is a indirect bandgap material (R-$Gamma$ = 3.11 eV) derived basically from the occupied O 2emph{p} and unoccupied Hf 5emph{d} states, and it still awaits experimental confirmation. The density of states (total, site-projected, and emph{l}-decomposed) and the bonding charge density calculations make it clear that the covalent bonds exist between the Hf and O atoms and the ionic bonds exist between the Ba atoms and HfO$_3$ ionic groups in BaHfO$_3$. From our calculations, it is shown that BaHfO$_3$ should be promising as a candidate for synthesis and design of superhard materials due to the covalent bonding between the transition metal Hf 5emph{d} and O 2emph{p} states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا