ترغب بنشر مسار تعليمي؟ اضغط هنا

Disformal quintessence

39   0   0.0 ( 0 )
 نشر من قبل Tomi Koivisto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tomi S. Koivisto




اسأل ChatGPT حول البحث

A canonic scalar field minimally coupled to a disformal metric generated by the field itself is considered. Causality and stability conditions are derived for such a field. Cosmological effects are studied and it is shown that the disformal modification could viably trigger an acceleration after a scaling matter era, thus possibly alleviating the coincidence problem.

قيم البحث

اقرأ أيضاً

We generalize dark matter production to a two-metric framework whereby the physical metric, which couples to the Standard Model (SM), is conformally and/or disformally related to the metric governing the gravitational dynamics. We show that this setu p is naturally present in many Ultra Violet (UV) constructions, from Kahler moduli fields to tensor-portal models, and from emergent gravity to supergravity models. In this setting we study dark matter production in the early Universe resulting from both scatterings off the thermal bath and the radiative decay of the inflaton. We also take into account non-instantaneous reheating effects at the end of inflation. In this context, dark matter emerges from the production of the scalar field mediating the conformal/disformal interactions with the SM, i.e. realising a Feebly Interacting Matter Particle (FIMP) scenario where the suppression scale of the interaction between the scalar and the SM can be taken almost as high as the Planck scale in the deep UV.
We study the frame dependence/independence of cosmological observables under disformal transformations, extending the previous results regarding conformal transformations, and provide the correspondence between Jordan-frame and Einstein-frame variabl es. We consider quantities such as the gravitational constant in the Newtonian limit, redshift, luminosity and angular diameter distances, as well as the distance-duality relation. Also, the Boltzmann equation, the observed specific intensity, and the adiabaticity condition are discussed. Since the electromagnetic action changes under disformal transformations, photons in the Einstein frame no longer propagate along null geodesics. As a result, several quantities of cosmological interest are modified. Nevertheless, we show that the redshift is invariant and the distance-duality relation (the relation between the luminosity distance and the angular diameter distance) still holds in general spacetimes even though the reciprocity relation (the relation between two geometrical distances) is modified.
We examine hilltop quintessence models, in which the scalar field is rolling near a local maximum in the potential, and w is close to -1. We first derive a general equation for the evolution of the scalar field in the limit where w is close to -1. We solve this equation for the case of hilltop quintessence to derive w as a function of the scale factor; these solutions depend on the curvature of the potential near its maximum. Our general result is in excellent agreement (delta w < 0.5%) with all of the particular cases examined. It works particularly well (delta w < 0.1%) for the pseudo-Nambu-Goldstone Boson potential. Our expression for w(a) reduces to the previously-derived slow-roll result of Sen and Scherrer in the limit where the curvature goes to zero. Except for this limiting case, w(a) is poorly fit by linear evolution in a.
We present an Effective Field Theory based reconstruction of quintessence models of dark energy directly from cosmological data. We show that current cosmological data possess enough constraining power to test several quintessence model properties fo r redshifts $zin [0,1.5]$ with no assumptions about the behavior of the scalar field potential. We use measurements of the cosmic microwave background, supernovae distances, and the clustering and lensing of galaxies to constrain the evolution of the dark energy equation of state, Swampland Conjectures, the shape of the scalar field reconstructed potential, and the structure of its phase space. The standard cosmological model still remains favored by data and, within quintessence models, deviations from its expansion history are bounded to be below the 10% level at 95% confidence at any redshift below $z=1.5$.
New solutions of DHOST theories can be generated by applying a disformal tranformation to a known seed solution. We examine the nature of spherically symmetric solutions of DHOST gravity obtained by disforming static spherical scalar field solutions, or stealth solutions, of general relativity. It is shown that, in these cases, black hole horizons are never created by disforming a black hole seed. New DHOST solutions are then created by disforming two lesser known scalar field solutions of general relativity: Wymans ``other solution and the Husain-Martinez-Nu~nez one. These new solutions demonstrate that one can obtain black hole horizons, wormhole throats, or horizonless geometries by disforming non-stealth, time-dependent, seeds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا