ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder Effects in La substituted ferrimagnetic Ca2FeMoO6 double perovskite

107   0   0.0 ( 0 )
 نشر من قبل R.N Bhowmik Dr
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ca2-xLaxFeMoO6 double perovskite with La concentration x = 0 to 0.6 was synthesized using solid state sintering route. The standard techniques of XRD, SEM and EDX were applied to characterize the material. Crystal structure of the samples was stabilized in monoclinic phase with space group P2I/n and lattice expansion was indicated with the increase of x. The increase of La concentration gradually suppressed the coexisting minor secondary phase in the material and simultaneously, EDX results indicated the accommodation of more Mo atoms in the crystal structure. A significant modification in the surface morphology of the material was noted from adhesive type surface for x = 0 to brittle type surface with more grain boundary contributions for La doped samples. We understand a significant change in magnetic properties (appearance of cluster glass component, reduction of magnetic moment and indication of higher TC) and in electrical properties (reduction of metallic character) in terms of enhanced internal disorder in the material, introduced due to La doping in double perovskite structure.



قيم البحث

اقرأ أيضاً

Identification of kinetic and thermodynamic factors that control crystal nucleation and growth represents a central challenge in materials synthesis. Here we report that apparently defect-free growth of La$_2$MnNiO$_6$ (LMNO) thin films supported on SrTiO$_3$ (STO) proceeds up to $1-5$ nm, after which it is disrupted by precipitation of NiO phases. Local geometric phase analysis and ensemble-averaged X-ray reciprocal space mapping show no change in the film strain away from the interface, indicating that mechanisms other than strain relaxation induce the formation of the NiO phases. $Ab , initio$ simulations suggest that oxygen vacancies become more likely with increasing thickness, due to the electrostatic potential build-up associated with the polarity mismatch at the film-substrate interface, this, in turn, promotes the formation of Ni-rich regions. These results suggest that the precipitate-free region could be extended further by increasing the oxygen chemical potential through the use of an elevated oxygen pressure or by incorporating electron redistributing dopants to suppress the built-in potential.
We have investigated spin and orbital magnetic moments of the Re 5d ion in the double perovskites A2FeReO6 (A = Ba, Sr, Ca) by X-ray magnetic circular dichroism (XMCD) at the Re L(2,3) edges. In these ferrimagnetic compounds an unusually large negati ve spin and positive orbital magnetic moment at the Re atoms was detected. The presence of a finite spin magnetic moment in a non-magnetic double perovskite as observed in the double perovskite Sr2ScReO6 proves that Re has also a small, but finite intrinsic magnetic moment. We further show for the examples of Ba and Ca that the usually neglected alkaline earth ions undoubtedly also contribute to the magnetism in the ferrimagnetic double perovskites.
In this paper, we examine the possible influence of extrinsic factors on the electrical and magnetotransport of La(0.67)Ca(0.33)Mn(1-x)Ru(x)O(3) (x < 0.10). These results not only exclude the extrinsic factors, but establishes the fact that the metal transitions both exhibiting MR is intrinsic to Ru substituted La(0.67)Ca(0.33)MnO(3) and the system. These results substantiate our hypothesis that Ru substituted system undergoes a magnetic phase separation involving the co-existence of two ferromagnetic-metallic phases in its ground state.
125 - D.D. Sarma 1998
Investigating LaNi(1-x)M(x)O3 (M = Mn and Fe), we identify a characteristic evolution of the spectral function with increasing disorder in presence of strong interaction effects across the metal-insulator transition. We discuss these results vis-a-vi s existing theories of electronic structure in simultaneous presence of disorder and interaction.
We present a comprehensive study on the magnetic structure, dynamics, and phase evolution in the single-phase double perovskite $La_2CoMnO_6$. The mixed valence state due to oxygen deficiency is verified by X-ray photoelectron spectroscopy, and confi rms a double ferromagnetic transition observed in DC magnetization. Neutron diffraction reveals that the magnetic structure is dominated by long-range ferromagnetic ordering, which is further corroborated by a critical exponents analysis of the paramagnetic to ferromagnetic phase transition. An analysis of the magnetization dynamics by means of linear and nonlinear ac magnetic susceptibilities marks the presence of two distinct cluster glass-like states that emerge at low temperatures. The isothermal entropy change as a function of temperature and magnetic field (H) is exploited to investigate the mechanism of stabilization of the magnetic phases across the H-T phase diagram. In the regime of the phase diagram where thermal energy is sufficiently low, regions of competing interactions due to local disorder become stabilized and display glass-like dynamics. The freezing mechanism of clusters is illustrated using a unique probe of transverse susceptibility that isolates the effects of the local anisotropy of the spin clusters. The results are summarized in a new H-T phase diagram of $La_2CoMnO_6$ revealed for the first time from these data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا