ﻻ يوجد ملخص باللغة العربية
Thermal noise of a mirror is one of the most important issues in high precision measurements such as gravitational-wave detection or cold damping experiments. It has been pointed out that thermal noise of a mirror with multi-layer coatings can be reduced by mechanical separation of the layers. In this paper, we introduce a way to further reduce thermal noise by locking the mechanically separated mirrors. The reduction is limited by the standard quantum limit of control noise, but it can be overcome with a quantum-non-demolition technique, which finally raises a possibility of complete elimination of coating thermal noise.
Reduction of coating thermal noise is a key issue in precise measurements with an optical interferometer. A good example of such a measurement device is a gravitational-wave detector, where each mirror is coated by a few tens of quarter-wavelength di
Thermal noise of a mirror is one of the limiting noise sources in the high precision measurement such as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a decade. In this paper, we present a derivat
The paradigm of cavity QED is a two-level emitter interacting with a high quality factor single mode optical resonator. The hybridization of the emitter and photon wave functions mandates large vacuum Rabi frequencies and long coherence times; featur
Thermal fluctuations of different origin in the substrate and in the coating of optical mirrors produce phase noise in the reflected wave. This noise determines the ultimate stabilization capability of high-Q cavities used as a reference system. In p
Photon echo is a fundamental tool for the manipulation of electromagnetic fields. Unavoidable spontaneous emission noise is generated in this process due to the strong rephasing pulse, which limits the achievable signal-to-noise ratio and represents