ﻻ يوجد ملخص باللغة العربية
We show any Riemannian curvature model can be geometrically realized by a manifold with constant scalar curvature. We also show that any pseudo-Hermitian curvature model, para-Hermitian curvature model, hyper-pseudo-Hermitian curvature model, or hyper-para-Hermitian curvature model can be realized by a manifold with constant scalar and *-scalar curvature.
We show that a Hermitian algebraic curvature model satisfies the Gray identity if and only if it is geometrically realizable by a Hermitian manifold. Furthermore, such a curvature model can in fact be realized by a Hermitian manifold of constant scal
We study geometric realization questions of curvature in the affine, Riemannian, almost Hermitian, almost para Hermitian, almost hyper Hermitian, almost hyper para Hermitian, Hermitian, and para Hermitian settings. We also express questions in Ivanov
We show that every Kaehler affine curvature model can be realized geometrically.
We show that a para-Hermitian algebraic curvature model satisfies the para-Gray identity if and only if it is geometrically realizable by a para-Hermitian manifold. This requires extending the Tricerri-Vanhecke curvature decomposition to the para-Her
We study the problem of deforming a Riemannian metric to a conformal one with nonzero constant scalar curvature and nonzero constant boundary mean curvature on a compact manifold of dimension $ngeq 3$. We prove the existence of such conformal metrics