ترغب بنشر مسار تعليمي؟ اضغط هنا

The Local Theory of the Cosmic Skeleton

43   0   0.0 ( 0 )
 نشر من قبل Dmitri Pogosyan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The local theory of the critical lines of 2D and 3D Gaussian fields that underline the cosmic structures is presented. In the context of cosmological matter distribution the subset of critical lines of the 3D density field serves to delineate the skeleton of the observed filamentary structure at large scales. A stiff approximation used to quantitatively describe the filamentary skeleton shows that the flux of the skeleton lines is related to the average Gaussian curvature of the 1D (2D) sections of the field, much in the same way as the density of the peaks. The distribution of the length of the critical lines with threshold is analyzed in detail, while the extended descriptors of the skeleton - its curvature and its singular points, are introduced and briefly described. Theoretical predictions are compared to measurements of the skeleton in realizations of Gaussian random fields in 2D and 3D. It is found that the stiff approximation predicts accurately the shape of the differential length, allows for analytical insight, and explicit closed form solutions. Finally, it provides a simple classification of the singular points of the critical lines: i) critical points; ii) bifurcation points; iii) slopping plateaux.

قيم البحث

اقرأ أيضاً

The $beta$-skeleton is a mathematical method to construct graphs from a set of points that has been widely applied in the areas of image analysis, machine learning, visual perception, and pattern recognition. In this work, we apply the $beta$-skeleto n to study the cosmic web. We use this tool on observed and simulated data to identify the filamentary structures and characterize the statistical properties of the skeleton. In particular, we compare the $beta$-skeletons built from SDSS-III galaxies to those obtained from MD-PATCHY mocks, and also to mocks directly built from the Big MultiDark $N$-body simulation. We find that the $beta$-skeleton is able to reveal the underlying structures in observed and simulated samples without any parameter fine-tuning. A different degree of sparseness can be obtained by adjusting the value of $beta$; in addition, the statistical properties of the length and direction of the skeleton connections show a clear dependence on redshift space distortions (RSDs), cosmological effects and galaxy bias. We also find that the $N$-body simulation accurately reproduces the RSD effect in the data, while the MD-PATCHY mocks appear to underestimate its magnitude. Our proof-of-concept study shows that the statistical properties of the $beta$-skeleton can be used to probe cosmological parameters and galaxy evolution.
We present a general formalism for identifying the caustic structure of an evolving mass distribution in an arbitrary dimensional space. For the class of Hamiltonian fluids the identification corresponds to the classification of singularities in Lagr angian catastrophe theory. Based on this we develop a theoretical framework for the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. The present work represents an extension of the work by Arnold et al., who classified the caustics for the 1- and 2-dimensional Zeldovich approximation. His seminal work established the role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. We introduce an alternative and transparent proof for Lagrangian catastrophe theory, and derive the caustic conditions for general Lagrangian fluids, with arbitrary dynamics, including dissipative terms and vorticity. The new proof allows us to describe the full 3-dimensional complexity of the gravitationally evolving cosmic matter field. One of our key findings is the significance of the eigenvector field of the deformation field for outlining the spatial structure of the caustic skeleton. We consider the caustic conditions for the 3-dimensional Zeldovich approximation, extending earlier work on those for 1- and 2-dimensional fluids towards the full spatial richness of the cosmic web.
We explore the characteristics of the cosmic web around Local Group(LG) like pairs using a cosmological simulation in the $Lambda$CDM cosmology. We use the Hessian of the gravitational potential to classify regions on scales of $sim 2$ Mpc as a peak, sheet, filament or void. The sample of LG counterparts is represented by two samples of halo pairs. The first is a general sample composed by pairs with similar masses and isolation criteria as observed for the LG. The second is a subset with additional observed kinematic constraints such as relative pair velocity and separation. We find that the pairs in the LG sample with all constraints are: (i) Preferentially located in filaments and sheets, (ii) Located in in a narrow range of local overdensity $0<delta<2$, web ellipticity $0.1<e<1.0$ and prolateness $-0.4<p<0.4$. (iii) Strongly aligned with the cosmic web. The alignments are such that the pair orbital angular momentum tends to be perpendicular to the smallest tidal eigenvector, $hat{e}_3$, which lies along the filament direction or the sheet plane. A stronger alignment is present for the vector linking the two halos with the vector $hat{e}_3$. Additionally, we fail to find a strong correlation of the spin of each halo in the pair with the cosmic web. All these trends are expected to a great extent from the selection on the LG total mass on the general sample. Applied to the observed LG, there is a potential conflict between the alignments of the different planes of satellites and the numerical evidence for satellite accretion along filaments; the direction defined by $hat{e}_3$. This highlights the relevance of achieving a precise characterization of the place of the LG in the cosmic web in the cosmological context provided by $Lambda$CDM.
We use the Bolshoi Simulation to find the most probable location of the Local Group (LG) in the cosmic web. Our LG simulacra are pairs of halos with isolation and kinematic properties consistent with observations. The cosmic web is defined using a ti dal tensor approach. We find that the LGs preferred location is regions with a dark matter overdensity close to the cosmic average. This makes filaments and sheets the preferred environment. We also find a strong alignment between the LG and the cosmic web. The orbital angular momentum is preferentially perpendicular to the smallest tidal eigenvector, while the vector connecting the two halos is strongly aligned along the smallest tidal eigenvector and perpendicular to the largest tidal eigenvector; the pair lies and moves along filaments and sheets. We do not find any evidence for an alignment between the spin of each halo in the pair and the cosmic web.
We present skeleton studies of non-Gaussianity in the CMB temperature anisotropy observed in the WMAP5 data. The local skeleton is traced on the 2D sphere by cubic spline interpolation which leads to more accurate estimation of the intersection posit ions between the skeleton and the secondary pixels than conventional linear interpolation. We demonstrate that the skeleton-based estimator of non-Gaussianity of the local type (f_NL) - the departure of the length distribution from the corresponding Gaussian expectation - yields an unbiased and sufficiently converged f_NL-likelihood. We analyse the skeleton statistics in the WMAP5 combined V- and W-band data outside the Galactic base-mask determined from the KQ75 sky-coverage. The results are consistent with Gaussian simulations of the the best-fitting cosmological model, but deviate from the previous results determined using the WMAP1 data. We show that it is unlikely that the improved skeleton tracing method, the omission of Q-band data, the modification of the foreground-template fitting method or the absence of 6 extended regions in the new mask contribute to such a deviation. However, the application of the Kp0 base-mask in data processing does improve the consistency with the WMAP1 results. The f_NL-likelihoods of the data are estimated at 9 different smoothing levels. It is unexpected that the best-fit values show positive correlation with the smoothing scales. Further investigation argues against a point-source or goodness-of-fit explanation but finds that about 30% of either Gaussian or f_NL samples having better goodness-of-fit than the WMAP5 show a similar correlation. We present the estimate f_NL=47.3+/-34.9 (1sigma error) determined from the first four smoothing angles and f_NL=76.8+/-43.1 for the combination of all nine. The former result may be overestimated at the 0.21sigma-level because of point sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا