ترغب بنشر مسار تعليمي؟ اضغط هنا

HCO mapping of the Horsehead : Tracing the illuminated dense molecular cloud surfaces

36   0   0.0 ( 0 )
 نشر من قبل Maryvonne Gerin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maryvonne Gerin




اسأل ChatGPT حول البحث

Far-UV photons strongly affect the physical and chemical state of molecular gas in the vicinity of young massive stars. We have obtained maps of the HCO and H13CO+ ground state lines towards the Horsehead edge at 5 angular resolution with a combination of IRAM PdBI and 30m observations. These maps have been complemented with IRAM-30m observations of several excited transitions at two different positions. Bright formyl radical emission delineates the illuminated edge of the nebula, with a faint emission remaining towards the shielded molecular core. Viewed from the illuminated star, the HCO emission almost coincides with the PAH and CCH emission. HCO reaches a similar abundance than HCO+ in the PDR (~1-2 x10^{-9} with respect to H2). Pure gas-phase chemistry models fail to reproduce the observed HCO abundance by ~2 orders of magnitude, except if reactions of OI with carbon radicals abundant in the PDR (i.e., CH2) play a significant role in the HCO formation. Alternatively, HCO could be produced in the PDR by non-thermal processes such as photo-processing of ice mantles and subsequent photo-desorption of either HCO or H2CO, and further gas phase photodissociation. The measured HCO/H13CO+ abundance ratio is large towards the PDR (~50), and much lower toward the gas shielded from FUV radiation (<1). We propose that high HCO abundances (>10^{-10}) together with large HCO/H13CO+ abundance ratios (>1) are sensitive diagnostics of the presence of active photochemistry induced by FUV radiation.

قيم البحث

اقرأ أيضاً

Deep R-band CCD linear polarimetry collected for fields with lines-of-sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, alm ost 2000 of them with polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 um dust emission map shows that the principal filament of Lupus I is constituted by three main clumps acted by magnetic fields having different large-scale structure properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and its apparent evolutive stage. On the other hand, assuming that the magnetic field is composed by a large-scale and a turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 uG to 200 uG in these clumps. The intensity increases towards the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.
The past two decades have seen extensive surveys of the far-infrared to submillimeter continuum emission in the plane of our Galaxy. We line out prospects for the coming decade for corresponding molecular and atomic line surveys which are needed to f ully understand the formation of the dense structures that give birth to clusters and stars out of the diffuse interstellar medium. We propose to work towards Galaxy wide surveys in mid-J CO lines to trace shocks from colliding clouds, Galaxy-wide surveys for atomic Carbon lines in order to get a detailed understanding of the relation of atomic and molecular gas in clouds, and to perform extensive surveys of the structure of the dense parts of molecular clouds to understand the importance of filaments/fibers over the full range of Galactic environments and to study how dense cloud cores are formed from the filaments. This work will require a large (50m) Single Dish submillimeter telescope equipped with massively multipixel spectrometer arrays, such as envisaged by the AtLAST project.
We detect luminous emission from HCN, HCO+ and HNC 1--0 in the QSO ULIRG Mrk~231 with the IRAM Plateau de Bure Interferometer at 1.55 by 1.28 resolution. All three lines show broad line wings - which are particularly prominent for HCN. Velocities are found to be similar (750 km/s) to those found for CO 1-0. This is the first time bright HCN, HCO+ and HNC emission has been detected in a large-scale galactic outflow. We find that both the blue- and red-shifted line wings are spatially extended by at least 0.75 (700 pc) in a north-south direction. The line wings are brighter (relative to the line center intensity) in HCN than in CO 1-0 and line ratios suggest that the molecular outflow consists of dense (n>10E4 cmE-3) and clumpy gas with a high HCN abundance X(HCN)>10E-8. These properties are consistent with the molecular gas being compressed and fragmented by shocks in the outflow. Alternatively, HCN is instead pumped by mid-IR continuum, but we propose that this effect is not strong for the spatially extended outflowing gas. In addition, we find that the rotation of the main disk, in east-west direction, is also evident in the HCN, HCO+ and HNC line emission. An unexpectedly bright HC3N 10-9 line is detected inside the central 400 pc of Mrk231. This HC3N emission may emerge from a shielded, dust-enshrouded region within the inner 40-50 pc where the gas is heated to high temperatures (200 - 300 K) by the AGN.
We present the results of a large-scale survey of the very dense gas in the Perseus molecular cloud using HCO+ and HCN (J = 4 - 3) transitions. We have used this emission to trace the structure and kinematics of gas found in pre- and protostellar cor es, as well as in outflows. We compare the HCO+/HCN data, highlighting regions where there is a marked discrepancy in the spectra of the two emission lines. We use the HCO+ to identify positively protostellar outflows and their driving sources, and present a statistical analysis of the outflow properties that we derive from this tracer. We find that the relations we calculate between the HCO+ outflow driving force and the Menv and Lbol of the driving source are comparable to those obtained from similar outflow analyses using 12CO, indicating that the two molecules give reliable estimates of outflow properties. We also compare the HCO+ and the HCN in the outflows, and find that the HCN traces only the most energetic outflows, the majority of which are driven by young Class 0 sources. We analyse the abundances of HCN and HCO+ in the particular case of the IRAS 2A outflows, and find that the HCN is much more enhanced than the HCO+ in the outflow lobes. We suggest that this is indicative of shock-enhancement of HCN along the length of the outflow; this process is not so evident for HCO+, which is largely confined to the outflow base.
We present multi-molecular line maps obtained with the Mopra Telescope towards the southern giant molecular cloud (GMC) complex G333, associated with the HII region RCW 106. We have characterised the GMC by decomposing the 3D data cubes with GAUSSCLU MPS, and investigated spatial correlations among different molecules with principal component analysis (PCA). We find no correlation between clump size and line width, but a strong correlation between emission luminosity and line width. PCA classifies molecules into high and low density tracers, and reveals that HCO+ and N2H+ are anti-correlated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا