ﻻ يوجد ملخص باللغة العربية
Many early-type galaxies have been detected at wavelengths of 24 to 160 micron, but the emission is usually dominated by heating from an AGN or from the evolved stellar population. Here we present Spitzer MIPS observations of a sample of elliptical and lenticular galaxies that are rich in cold molecular gas, and we investigate whether the MIR to FIR emission could be associated with star formation activity. The 24 micron images show a rich variety of structures, including nuclear point sources, rings, disks, and smooth extended emission. Comparisons to matched-resolution CO and radio continuum images suggest that the bulk of the 24 micron emission can be traced to star formation with some notable exceptions. The 24 micron luminosities of the CO-rich galaxies are typically a factor of 15 larger than what would be expected from the dust associated with their evolved stars. In addition, FIR/radio flux density ratios are consistent with star formation. We conclude that the star formation rates in z=0 elliptical and lenticular galaxies, as inferred by other authors from UV and optical data, are roughly consistent with the molecular gas abundances and that the molecular gas is usually unstable to star formation activity.
The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 micron luminosities, both normalized with the K
Motivated by recent progress in the study of early-type galaxies owing to technological advances, the launch of new space telescopes and large ground-based surveys, we attempt a short review of our current understanding of the recent star-formation activity in such intriguing galactic systems.
The molecular gas content of local early-type galaxies is constrained and discussed in relation to their evolution. First, as part of the Atlas3D survey, we present the first complete, large (260 objects), volume-limited single-dish survey of CO in n
High resolution 2D hydrodynamical simulations describing the evolution of the hot ISM in axisymmetric two-component models of early-type galaxies well reproduced the observed trends of the X-ray luminosity ($L_mathrm{x}$) and temperature ($T_mathrm{x
Circumnuclear star forming regions, also called hotspots, are often found in the inner regions of some spiral galaxies where intense processes of star formation are taking place. In the UV, massive stars dominate the observed circumnuclear emission e