ترغب بنشر مسار تعليمي؟ اضغط هنا

Eigenvalues correlations and the distribution of ground state angular momenta for random many-body quantum systems

47   0   0.0 ( 0 )
 نشر من قبل Roelof Bijker
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The observed preponderance of ground states with angular momentum L=0 in many-body quantum systems with random two-body interactions is analyzed in terms of correlation coefficients (covariances) among different eigenstates. It is shown that the geometric analysis of Chau {it et al.} can be interpreted in terms of correlations (covariances) between energy eigenvalues thus providing an entirely statistical explanation of the distribution of ground state angular momenta of randomly interacting quantum systems which, in principle, is valid for both fermionic and bosonic systems. The method is illustrated for the interacting boson model.

قيم البحث

اقرأ أيضاً

This article presents several challenges to nuclear many-body theory and our understanding of the stability of nuclear matte r. In order to achieve this, we present five different cases, starting with an idealized toy model. These cases expose proble ms that need to be understood in order to match recent advances in nuclear theory with current experimental programs in low-energy nuclear physics. In particular, we focus on our current understanding, or lack thereof, of many-body forces, and how they evolve as functions of the number of particles . We provide examples of discrepancies between theory and experiment and outline some selected perspectives for future research directions.
We present a complete calculation of nucleon-deuteron scattering as well as ground and low-lying excited states of light nuclei in the mass range A=3-16 up through next-to-next-to-leading order in chiral effective field theory using semilocal coordin ate-space regularized two- and three-nucleon forces. It is shown that both of the low-energy constants entering the three-nucleon force at this order can be reliably determined from the triton binding energy and the differential cross section minimum in elastic nucleon-deuteron scattering. The inclusion of the three-nucleon force is found to improve the agreement with the data for most of the considered observables.
Background$colon$ The $^{29}$F system is located at the lower-N boundary of the island of inversion and is an exotic, weakly bound system. Little is known about this system beyond its two-neutron separation energy ($S_{2n}$) with large uncertainties. A similar situation is found for the low-lying spectrum of its unbound binary subsystem $^{28}$F. Purpose$colon$ To investigate the configuration mixing, matter radius and neutron-neutron correlations in the ground state of $^{29}$F within a three-body model, exploring the possibility of $^{29}$F to be a two-neutron halo nucleus. Method$colon$ The $^{29}$F ground-state wave function is built within the hyperspherical formalism by using an analytical transformed harmonic oscillator basis. The Gogny-Pires-Tourreil (GPT) nn interaction with central, spin-orbit and tensor terms is employed in the present calculations, together with different core$+n$ potentials constrained by the available experimental information on $^{28}$F. Results$colon$ The $^{29}$F ground-state configuration mixing and its matter radius are computed for different choices of the $^{28}$F structure and $S_{2n}$ value. The admixture of d-waves with pf components are found to play an important role, favoring the dominance of dineutron configurations in the wave function. Our computed radii show a mild sensitivity to the $^{27}$F$+n$ potential and $S_{2n}$ values. The relative increase of the matter radius with respect to the $^{27}$F core lies in the range 0.1-0.4 fm depending upon these choices. Conclusions$colon$ Our three-body results for $^{29}$F indicate the presence of a moderate halo structure in its ground state, which is enhanced by larger intruder components. This finding calls for an experimental confirmation.
Quantum many-body nuclear dynamics is treated at the mean-field level with the time-dependent Hartree-Fock (TDHF) theory. Low-lying and high-lying nuclear vibrations are studied using the linear response theory. The fusion mechanism is also described for light and heavy systems. The latter exhibit fusion hindrance due to quasi-fission. Typical characteristics of quasi-fission, such as contact time and partial symmetrisation of the fragments mass in the exit channel, are reproduced by TDHF calculations. The (multi-)nucleon transfer at sub-barrier energies is also discussed.
Background: Theoretical calculations have shown that the energy and angular correlations in the three-body decay of the two-neutron unbound O26 can provide information on the ground-state wave function, which has been predicted to have a dineutron co nfiguration and 2n halo structure. Purpose: To use the experimentally measured three-body correlations to gain insight into the properties of O26, including the decay mechanism and ground-state resonance energy. Method: O26 was produced in a one-proton knockout reaction from F27 and the O24+n+n decay products were measured using the MoNA-Sweeper setup. The three-body correlations from the O26 ground-state resonance decay were extracted. The experimental results were compared to Monte Carlo simulations in which the resonance energy and decay mechanism were varied. Results: The measured three-body correlations were well reproduced by the Monte Carlo simulations but were not sensitive to the decay mechanism due to the experimental resolutions. However, the three-body correlations were found to be sensitive to the resonance energy of O26. A 1{sigma} upper limit of 53 keV was extracted for the ground-state resonance energy of O26. Conclusions: Future attempts to measure the three-body correlations from the ground-state decay of O26 will be very challenging due to the need for a precise measurement of the O24 momentum at the reaction point in the target.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا