ترغب بنشر مسار تعليمي؟ اضغط هنا

Shell model half-lives for r-process N=82 nuclei

126   0   0.0 ( 0 )
 نشر من قبل Jose Cuenca-Garcia
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed shell-model calculations of the half-lives and neutron-branching probabilities of the r-process waiting point nuclei at the magic neutron number N=82. These new calculations use a larger model space than previous shell model studies and an improved residual interaction which is adjusted to recent spectroscopic data around A=130. Our shell-model results give a good account of all experimentally known half-lives and $Q_beta$-values for the N=82 r-process waiting point nuclei. Our half-life predictions for the N=82 nuclei with Z=42--46 agree well with recent estimates based in the energy-density functional method.



قيم البحث

اقرأ أيضاً

We have performed large-scale shell-model calculations of the half-lives and neutron-branching probabilties of the r-process waiting point nuclei at the magic neutron number N=82. We find good agreement with the measured half-lives of 129Ag and 130Cd . Our shell-model half-lives are noticeably shorter than those currently adopted in r-process simulations. Our calculation suggests that 130Cd is not produced in beta-flow equilibrium with the other N=82 isotones on the r-process path.
We have performed large-scale shell-model calculations of the half-lives and neutron-branching probabilities of the r-process waiting point nuclei at the magic neutron numbers N=50, 82, and 126. The calculations include contributions from allowed Gam ow-Teller and first-forbidden transitions. We find good agreement with the measured half-lives for the N=50 nuclei with charge numbers Z=28-32 and for the N=82 nuclei 129Ag and 130Cd. The contribution of forbidden transitions reduce the half-lives of the N=126 waiting point nuclei significantly, while they have only a small effect on the half-lives of the N=50 and 82 r-process nuclei.
111 - J. Wu , S. Nishimura , P. Moller 2020
The $beta$-decay half-lives of 55 neutron-rich nuclei $^{134-139}$Sn, $^{134-142}$Sb, $^{137-144}$Te, $^{140-146}$I, $^{142-148}$Xe, $^{145-151}$Cs, $^{148-153}$Ba, $^{151-155}$La were measured at the Radioactive Isotope Beam Factory (RIBF) employing the projectile fission fragments of $^{238}$U. The nuclear level structure, which relates to deformation, has a large effect on the half-lives. The impact of newly-measured half-lives on modeling the astrophysical origin of the heavy elements is studied in the context of $r$ process nucleosynthesis. For a wide variety of astrophysical conditions, including those in which fission recycling occurs, the half-lives have an important local impact on the second ($A$ $approx$ 130) peak.
In the present work we calculate the allowed $beta^-$-decay half-lives of nuclei with $Z = 20 -30$ and N $leq$ 50 systematically under the framework of the nuclear shell model. A recent study shows that some nuclei in this region belong to the island of inversion. We perform calculation for $fp$ shell nuclei using KB3G effective interaction. In the case of Ni, Cu, and Zn, we used JUN45 effective interaction. Theoretical results of $Q$ values, half-lives, excitation energies, log$ft$ values, and branching fractions are discussed and compared with the experimental data. In the Ni region, we also compared our calculated results with recent experimental data [Z. Y. Xu {it et al.}, emph{Phys. Rev. Lett.} textbf{113}, 032505, 2014]. Present results agree with the experimental data of half-lives in comparison to QRPA.
Heavy neutron-rich nuclei close to N=126 were produced by fragmentation of a 1 A GeV 208Pb beam at the FRS at GSI. The beta-decay half-lives of 8 nuclides have been determined. The comparison of the data with model calculations including an approach based on the self-consistent ground-state description and continuum QRPA considering the Gamow-Teller and first-forbidden decays provide a first indication on the importance of first-forbidden transitions around A=195. The measured data indicate that the matter flow in the r-process to heavier fissioning nuclei is faster than previously expected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا