ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra High Energy Cosmic Rays from Black Hole Jets of Radio Galaxies

75   0   0.0 ( 0 )
 نشر من قبل Charles Dermer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. D. Dermer




اسأل ChatGPT حول البحث

The Auger Collaboration reports that the arrival directions of >60 EeV ultra-high energy cosmic rays (UHECRs) cluster along the supergalactic plane and correlate with active galactic nuclei (AGN) within ~100 Mpc. The association of several events with the nearby radio galaxy Centaurus A supports the paradigm that UHECRs are powered by supermassive black-hole engines and accelerated to ultra-high energies in the shocks formed by variable plasma winds in the inner jets of radio galaxies. The GZK horizon length of 75 EeV UHECR protons is ~100 Mpc, so that the Auger results are consistent with an assumed proton composition of the UHECRs. In this scenario, the sources of UHECRs are FR II radio galaxies and FR I galaxies like Cen A with scattered radiation fields that enhance UHECR neutral-beam production. Radio galaxies with jets pointed away from us can still be observed as UHECR sources due to deflection of UHECRs by magnetic fields in the radio lobes of these galaxies. A broadband ~1 MeV -- 10 EeV radiation component in the spectra of blazar AGN is formed by UHECR-induced cascade radiation in the extragalactic background light (EBL). This emission is too faint to be seen from Cen A, but could be detected from more luminous blazars.

قيم البحث

اقرأ أيضاً

The origin of ultra-high energy cosmic rays (UHECRs) has been an open question for decades. Here, we use a combination of hydrodynamic simulations and general physical arguments to demonstrate that UHECRs can in principle be produced by diffusive sho ck acceleration (DSA) in shocks in the backflowing material of radio galaxy lobes. These shocks occur after the jet material has passed through the relativistic termination shock. Recently, several authors have demonstrated that highly relativistic shocks are not effective in accelerating UHECRs. The shocks in our proposed model have a range of non-relativistic or mildly relativistic shock velocities more conducive to UHECR acceleration, with shock sizes in the range 1-10kpc. Approximately 10% of the jets energy flux is focused through a shock in the backflow of $M>3$. Although the shock velocities can be low enough that acceleration to high energy via DSA is still efficient, they are also high enough for the Hillas energy to approach $10^{19-20}$eV, particularly for heavier CR composition and in cases where fluid elements pass through multiple shocks. We discuss some of the more general considerations for acceleration of particles to ultra-high energy with reference to giant-lobed radio galaxies such as Centaurus A and Fornax A, a class of sources which may be responsible for the observed anisotropies from UHECR observatories.
The Pierre Auger Observatory reports that 20 of the 27 highest energy cosmic rays have arrival directions within 3.2 deg of a nearby galaxy in the Veron-Cetty & Veron Catalog of Quasars and Active Galactic Nuclei (12th Ed.), with ~5 of the correlatio ns expected by chance. In this paper we examine the correlated galaxies to gain insight into the possible UHECR sources. We find that 14 of the 21 correlated VCV galaxies are AGNs and we determine their bolometric luminosities. The remaining 7 are primarily star-forming galaxies. The bolometric luminosities of the correlated AGNs are all greater than 5 x 10^{42} erg/s, which may explain the absence of UHECRs from the Virgo region in spite of the large number of VCV galaxies in Virgo, since most of the VCV galaxies in the Virgo region are low luminosity AGNs. Interestingly, the bolometric luminosities of most of the AGNs are significantly lower than required to satisfy the minimum condition for UHECR acceleration in a continuous jet. If a UHECR-AGN correlation is substantiated with further statistics, our results lend support to the recently proposed ``giant AGN flare mechanism for UHECR acceleration.
155 - M.T. Dova 2016
The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 1017eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written versi on of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present an introduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.
We explore acceleration of ions in the Quark Nova (QN) scenario, where a neutron star experiences an explosive phase transition into a quark star (born in the propeller regime). In this picture, two cosmic ray components are isolated: one related to the randomized pulsar wind and the other to the propelled wind, both boosted by the ultra-relativistic Quark Nova shock. The latter component acquires energies $10^{15} {rm eV}<E<10^{18} {rm eV}$ while the former, boosted pulsar wind, achieves ultra-high energies $E> 10^{18.6}$ eV. The composition is dominated by ions present in the pulsar wind in the energy range above $10^{18.6}$ eV, while at energies below $10^{18}$ eV the propelled ejecta, consisting of the fall-back neutron star crust material from the explosion, is the dominant one. Added to these two components, the propeller injects relativistic particles with Lorentz factors $Gamma_{rm prop.} sim 1-1000$, later to be accelerated by galactic supernova shocks. The QN model appears to be able to account for the extragalactic cosmic rays above the ankle and to contribute a few percent of the galactic cosmic rays below the ankle. We predict few hundred ultra-high energy cosmic ray events above $10^{19}$ eV for the Pierre Auger detector per distant QN, while some thousands are predicted for the proposed EUSO and OWL detectors.
182 - Todor Stanev 2008
We briefly describe the energy loss processes of ultrahigh energy protons, heavier nuclei and gamma rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic ray energy spectrum in propagation by the energy loss processes and the charged cosmic ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh energy cosmic rays goes into gamma rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا