ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution HNC 3-2 SMA observations of Arp220

153   0   0.0 ( 0 )
 نشر من قبل Susanne Aalto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high resolution (0.4) observations of HNC J=3-2 with the SubMillimeter Array (SMA). We find luminous HNC 3-2 line emission in the western part of Arp220, centered on the western nucleus, while the eastern side of the merger shows relatively faint emission. A bright (36 K), narrow (60 km/s) emission feature emerges from the western nucleus, superposed on a broader spectral component. A possible explanation is weak maser emission through line-of-sight amplification of the background continuum source. There is also a more extended HNC 3-2 emission feature north and south of the nucleus. This feature resembles the bipolar OH maser morphology around the western nucleus. Substantial HNC abundances are required to explain the bright line emission from this warm environment. We discuss this briefly in the context of an X-ray chemistry and radiative excitation. We conclude that the luminous and possibly amplified HNC emission of the western nucleus of the Arp220 merger reflects the unusual, and perhaps transient, environment of the starburst/AGN activity there. The faint HNC line emission towards Arp220-east reveals a real difference in physical conditions between the two merger nuclei.

قيم البحث

اقرأ أيضاً

123 - S. Matsushita 2004
We present the first interferometric CO(J=3-2) observations (beam size of 3.9x1.6 or 160pc x 65pc) with the Submillimeter Array (SMA) toward the center of the Seyfert 2 galaxy M51. The image shows a strong concentration at the nucleus and weak emissi on from the spiral arm to the northwest. The integrated intensity of the central component in CO(J=3-2) is almost twice as high as that in CO(J=1-0), indicating that the molecular gas within an ~80 pc radius of the nucleus is warm (>~100 K) and dense (~10^4 cm^-3). Similar intensity ratios are seen in shocked regions in our Galaxy, suggesting that these gas properties may be related to AGN or starburst activity. The central component shows a linear velocity gradient (~1.4 km/s/pc) perpendicular to the radio continuum jet, similar to that seen in previous observations and interpreted as a circumnuclear molecular disk/torus around the Seyfert 2 nucleus. In addition, we identify a linear velocity gradient (~0.7 km/s/pc) along the jet. Judging from the energetics, the velocity gradient can be explained by supernova explosions or energy and momentum transfer from the jet to the molecular gas via interaction, which is consistent with the high intensity ratio.
79 - Xuepeng Chen 2013
We present high angular resolution 1.3 mm and 850 um dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/mu ltiple systems. The median angular resolution in the survey is 2.5 arcsec, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64+/-0.08 and 0.91+/-0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I YSOs, and approximately three (for MF) and four (for CSF) times larger than the values found among MS stars, with a similar range of separations. Furthermore, the observed fraction of high order multiple systems to binary systems in Class 0 protostars (0.50+/-0.09) is also larger than the fractions found in Class I YSOs (0.31+/-0.07) and MS stars (< 0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary systems shows a general trend in which companion star fraction increases with decreasing companion separation. We find that 67%+/-8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation.
We have used the Submillimeter Array at 860$,mu$m to observe the brightest SCUBA-2 sources in 4$,$deg$^{2}$ of the Cosmology Legacy Survey. We have targeted 75 of the brightest single-dish SCUBA-2 850$,mu$m sources down to $S_{850},{approx},8,$mJy, a chieving an average synthesized beam of 2.4$^{primeprime}$ and an average rms of $sigma_{860},{=},1.5,$mJy in our primary beam-corrected maps. We searched our maps for $4sigma$ peaks, corresponding to $S_{860},{gtrsim},6,$mJy sources, and detected 59 single galaxies and three pairs of galaxies. We include in our study 28 archival observations, bringing our sample size to 103 bright single-dish submillimetre sources with interferometric follow-up. We compute the cumulative and differential number counts of our sample, finding them to overlap with previous single-dish survey number counts within the uncertainties, although our cumulative number count is systematically lower than the parent SCUBA-2 cumulative number count by $24,{pm},6$ per cent between 11 and 15$,$mJy. We estimate the probability that a ${gtrsim},10,$mJy single-dish submillimetre source resolves into two or more galaxies with similar flux densities, causing a significant change in the number counts, to be about 15 per cent. Assuming the remaining 85 per cent of the targets are ultra-luminous starburst galaxies between $z,{=},2$-3, we find a likely volume density of ${gtrsim},400,$M$_{odot},$yr$^{-1}$ sources to be ${sim},3^{+0.7}_{-0.6},{times},10^{-7},$Mpc$^{-3}$. We show that the descendants of these galaxies could be ${gtrsim},4,{times},10^{11},$M$_{odot}$ local quiescent galaxies, and that about 10 per cent of their total stellar mass would have formed during these short bursts of star-formation.
We find that the HNC J=3-2 emission is brighter than the HCN 3-2 emission by factors of 1.5 to 2.3 in the ultraluminous mergers Arp220 and Mrk231 and the luminous IR galaxy NGC4418. We furthermore report the detection of HNC J=4-3 in Mrk231. Overlumi nous HNC emission is unexpected in warm molecular gas in ultraluminous galaxies since I(HNC)>I(HCN) is usually taken as a signature of cold (10 - 20 K) dark clouds. Since the molecular gas of the studied galaxies is warm (T_k > 40 K) we present two alternative explanations to the overluminous HNC: a) HNC excitation is affected by pumping of the rotational levels through the mid-infrared continuum and b) XDRs (X-ray Dominated Regions) influence the abundances of HNC. HNC may become pumped at 21.5 micron brightness temperatures of 50 K, suggesting that HNC-pumping could be common in warm, ultraluminous galaxies with compact IR-nuclei.On the other hand, all three galaxies are either suspected of having buried AGN - or the presence of AGN is clear (Mrk231) - indicating that X-rays may affect the ISM chemistry. We conclude that both the pumping and XDR alternatives imply molecular cloud ensembles distinctly different from those of typical starforming regions in the Galaxy, or the ISM of less extreme starburst galaxies. The HNC molecule shows the potential of becoming an additional important tracer of extreme nuclear environments.
191 - M. Krips , A.B. Peck , K. Sakamoto 2007
We present Submillimeter Array observations of the z=3.91 gravitationally lensed broad absorption line quasar APM08279+5255 which spatially resolve the 1.0mm (0.2mm rest-frame) dust continuum emission. At 0.4 resolution, the emission is separated int o two components, a stronger, extended one to the northeast (46+/-5mJy) and a weaker, compact one to the southwest (15+/-2mJy). We have carried out simulations of the gravitational lensing effect responsible for the two submm components in order to constrain the intrinsic size of the submm continuum emission. Using an elliptical lens potential, the best fit lensing model yields an intrinsic (projected) diameter of ~80pc, which is not as compact as the optical/near-infrared (NIR) emission and agrees with previous size estimates of the gas and dust emission in APM08279+5255. Based on our estimate, we favor a scenario in which the 0.2mm (rest-frame) emission originates from a warm dust component (T_d=150-220K) that is mainly heated by the AGN rather than by a starburst (SB). The flux is boosted by a factor of ~90 in our model, consistent with recent estimates for APM08279+5255.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا