ترغب بنشر مسار تعليمي؟ اضغط هنا

Perspectives in spintronics: magnetic resonant tunneling, spin-orbit coupling, and GaMnAs

190   0   0.0 ( 0 )
 نشر من قبل Jaroslav Fabian
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spintronics has attracted wide attention by promising novel functionalities derived from both the electron charge and spin. While branching into new areas and creating new themes over the past years, the principal goals remain the spin and magnetic control of the electrical properties, essentially the I-V characteristics, and vice versa. There are great challenges ahead to meet these goals. One challenge is to find niche applications for ferromagnetic semiconductors, such as GaMnAs. Another is to develop further the science of hybrid ferromagnetic metal/semiconductor heterostructures, as alternatives to all-semiconductor room temperature spintronics. Here we present our representative recent efiorts to address such challenges. We show how to make a digital magnetoresistor by combining two magnetic resonant diodes, or how introducing ferromagnetic semiconductors as active regions in resonant tunneling diodes leads to novel efiects of digital magnetoresistance and of magnetoelectric current oscillations. We also discuss the phenomenon of tunneling anisotropic magnetoresistance in Fe/GaAs junctions by introducing the concept of the spin-orbit coupling field, as an analog of such fields in all-semiconductor junctions. Finally, we look at fundamental electronic and optical properties of GaMnAs by employing reasonable tight-binding models to study disorder efiects.

قيم البحث

اقرأ أيضاً

Magnetic anisotropy phenomena in bimetallic antiferromagnets Mn$_2$Au and MnIr are studied by first-principles density functional theory calculations. We find strong and lattice-parameter dependent magnetic anisotropies of the ground state energy, ch emical potential, and density of states, and attribute these anisotropies to combined effects of large moment on the Mn 3$d$ shell and large spin-orbit coupling on the 5$d$ shell of the noble metal. Large magnitudes of the proposed effects can open a route towards spintronics in compensated antiferromagnets without involving ferromagnetic elements.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
We carefully investigated the ferromagnetic coupling in the as-grown and annealed ferromagnetic semiconductor GaMnAs/AlGaMnAs bilayer devices. We observed that the magnetic interaction between the two layers strongly affects the magnetoresistance of the GaMnAs layer with applying out of plane magnetic field. After low temperature annealing, the magnetic easy axis of the AlGaMnAs layer switches from out of plane into in-plane and the interlayer coupling efficiency is reduced from up to 0.6 to less than 0.4. However, the magnetic coupling penetration depth for the annealed device is twice that of the as-grown bilayer device.
211 - A. Manchon , H.C. Koo , J. Nitta 2015
In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain certain peculiarities in the electron spin resonance of two-dimensional semiconductors. Over the past thirty years, similar ideas have been leading to a vast numbe r of predictions, discoveries, and innovative concepts far beyond semiconductors. The past decade has been particularly creative with the realizations of means to manipulate spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and with the discovery of new topological classes of materials. These developments reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures ranging from layered graphene-like materials to cold atoms. This review presents the most remarkable recent and ongoing realizations of Rashba physics in condensed matter and beyond.
Symmetry formulated by group theory plays an essential role with respect to the laws of nature, from fundamental particles to condensed matter systems. Here, by combining symmetry analysis and tight-binding model calculations, we elucidate that the c rystallographic symmetries of a vast number of magnetic materials with light elements, in which the neglect of relativistic spin-orbit coupling (SOC) is an appropriate approximation, are considerably larger than the conventional magnetic groups. Thus, a symmetry description that involves partially-decoupled spin and spatial rotations, dubbed as spin group, is required. Spin group permits more symmetry operations and thus more energy degeneracies that are disallowed by the magnetic groups. One consequence of the spin group is the new anti-unitary symmetries that protect SOC-free Z_2 topological phases with unprecedented surface node structures. Our work not only manifests the physical reality of materials with weak SOC, but also shed light on the understanding of all solids with and without SOC by a unified group theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا