ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic activity in the photosphere of CoRoT-Exo-2a. Active longitudes and short-term spot cycle in a young Sun-like star

161   0   0.0 ( 0 )
 نشر من قبل Antonino Francesco Lanza
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The space experiment CoRoT has recently detected transits by a hot Jupiter across the disc of an active G7V star (CoRoT-Exo-2a) that can be considered as a good proxy for the Sun at an age of approximately 0.5 Gyr. We present a spot modelling of the optical variability of the star during 142 days of uninterrupted observations performed by CoRoT with unprecedented photometric precision. We apply spot modelling approaches previously tested in the case of the Sun by modelling total solar irradiance variations. To model the light curve of CoRoT-Exo-2a, we take into account both the photometric effects of cool spots as well as those of solar-like faculae, adopting solar analogy. Two active longitudes initially on opposite hemispheres are found on the photosphere of CoRoT-Exo-2a with a rotation period of 4.522 $pm$ 0.024 days. Their separation changes by approximately 80 degrees during the time span of the observations. From this variation, a relative amplitude of the surface differential rotation lower than about 1 percent is estimated. Individual spots form within the active longitudes and show an angular velocity about 1 percent smaller than that of the longitude pattern. The total spotted area shows a cyclic oscillation with a period of 28.9 $pm$ 4.3 days, which is close to 10 times the synodic period of the planet as seen by the rotating active longitudes. The implications of such results for the internal rotation of CoRoT-Exo-2a are discussed on the basis of solar analogy. A possible magnetic star-planet interaction is suggested by the cyclic variation of the spotted area. Alternatively, the 28.9-d cycle may be related to Rossby-type waves propagating in the subphotospheric layers of the star.

قيم البحث

اقرأ أيضاً

195 - A. F. Lanza , I. Pagano , G. Leto 2008
We present a preliminary analysis of the photospheric activity of CoRoT-Exo-2a, a young G7V star accompanied by a transiting hot Jupiter recently discovered by CoRoT. We apply spot modelling techniques developed for the analysis of the Sun as a star and capable to extract from CoRoT high precision light curves information on the variation of the total spotted area and the longitude of active regions along the 142 days of the observations. This preliminary analysis shows that the active regions form within two active longitudes separated by about 180 degrees and rotating with periods of 4.5221 and 4.5543 days, respectively, and that the total spotted area oscillates with a period of about 28.9 days.
CoRoT-2a is a young (about 0.5 Gyr) G7V star accompanied by a transiting hot-Jupiter, discovered by the CoRoT satellite (Alonso et al. 2008; Bouchy et al. 2008). An analysis of its photospheric activity, based on spot modelling techniques previously developed by our group for the analysis of the Sun as a star, shows that the active regions on CoRoT-2a arised within two active longitudes separated by about 180 degrees and rotating with periods of 4.5221 and 4.5543 days, respectively, at epoch of CoRoT observations (112 continous days centered at 2007.6). We show that the total spotted area oscillates with a period of about about 8.9 days, a value close to 10 times the synodic period of the planet with respect to the active longitude pattern rotating in 4.5221 days. Moreover, the variance of the stellar flux is modulated in phase with the planet orbital period. This suggests a possible star-planet magnetic interaction, a phenomenon already seen in other extrasolar planetary systems hosting hot-Jupiters.
The space experiment CoRoT has recently detected a transiting hot Jupiter in orbit around a moderately active F-type main-sequence star (CoRoT-Exo-4a). This planetary system is of particular interest because it has an orbital period of 9.202 days, th e second longest one among the transiting planets known to date. We study the surface rotation and the activity of the host star during an uninterrupted sequence of optical observations of 58 days. Our approach is based on a maximum entropy spot modelling technique extensively tested by modelling the variation of the total solar irradiance. It assumes that stellar active regions consist of cool spots and bright faculae, analogous to sunspots and solar photospheric faculae, whose visibility is modulated by stellar rotation. The modelling of the light curve of CoRoT-Exo-4a reveals three main active longitudes with lifetimes between about 30 and 60 days that rotate quasi-synchronously with the orbital motion of the planet. The different rotation rates of the active longitudes are interpreted in terms of surface differential rotation and a lower limit of 0.057 pm 0.015 is derived for its relative amplitude. The enhancement of activity observed close to the subplanetary longitude suggests a magnetic star-planet interaction, although the short duration of the time series prevents us from drawing definite conclusions.
We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, aimed at determining their activity level, spot distribution, and differential rotation. Both stars were discovered by us to be young stars and were observed by the NA SA Kepler mission. The stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]) were derived from optical spectroscopy which allowed us also to study the chromospheric activity from the emission in the core of Halpha and CaII IRT lines. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation are performed in a Bayesian manner, using a Markov chain Monte Carlo method. Both stars came out to be Sun-like with an age of about 100-200 Myr, based on their lithium content and kinematics. Their youth is confirmed by the high level of chromospheric activity, comparable to that displayed by the early G-type stars in the Pleiades cluster. The flux ratio of the CaII-IRT lines suggests that the cores of these lines are mainly formed in optically-thick regions analogous to solar plages. The model of the light curves requires at least seven enduring spots for KIC 7985370 and nine spots for KIC 7765135 for a satisfactory fit. The assumption of longevity of the star spots, whose area is allowed to evolve in time, is at the heart of our approach. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dOmega~0.18 rad/day) which is in contrast with the predictions of some mean-field models of differential rotation for fast-rotating stars. Our results are instead in agreement with previous works on solar-type stars and with other models which predict a higher latitudinal shear, increasing with equatorial angular velocity.
Aims. We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star xi Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods. We obtain ed seven epochs of high-resolution, circularly-polarized spectra from the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using approximately 6,100 photospheric spectral lines covering the visible domain, we employed a cross-correlation procedure to compute a mean polarized line profile from each spectrum. The large-scale photospheric magnetic field of the star was then modelled by means of Zeeman-Doppler Imaging, allowing us to follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitored the width of several magnetically sensitive spectral lines, the radial velocity, the line asymmetry of intensity line profiles, and the chromospheric emission in the cores of the Ca II H and Halpha lines. Results. During the highest observed activity states, in 2007 and 2011, the large-scale field of xi Boo A is almost completely axisymmetric and is dominated by its toroidal component. The magnetic topologies reconstructed for these activity maxima are very similar, suggesting a form of short cyclicity in the large-scale field distribution. Correlated temporal evolution, due to both rotational modulation and seasonal variability, is observed between the Ca II emission, the Halpha emission and the width of magnetically sensitive lines. When measurable, the differential rotation reveals a strong latitudinal shear in excess of 0.2 rad/d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا