ﻻ يوجد ملخص باللغة العربية
Starting with the projective-superspace off-shell formulation for four-dimensional N = 2 supersymmetric sigma-models on cotangent bundles of arbitrary Hermitian symmetric spaces, their on-shell description in terms of N = 1 chiral superfields is developed. In particular, we derive a universal representation for the hyperkaehler potential in terms of the curvature of the symmetric base space. Within the tangent-bundle formulation for such sigma-models, completed recently in arXiv:0709.2633 and realized in terms of N = 1 chiral and complex linear superfields, we give a new universal formula for the superspace Lagrangian. A closed form expression is also derived for the Kaehler potential of an arbitrary Hermitian symmetric space in Kaehler normal coordinates.
We review the projective-superspace construction of four-dimensional N=2 supersymmetric sigma models on (co)tangent bundles of the classical Hermitian symmetric spaces.
We formulate four-dimensional $mathcal{N} = 1$ supersymmetric nonlinear sigma models on Hermitian symmetric spaces with higher derivative terms, free from the auxiliary field problem and the Ostrogradskis ghosts, as gauged linear sigma models. We the
We study chiral anomalies in $mathcal N=(0, 1)$ and $(0, 2)$ two-dimensional minimal sigma models defined on generic homogeneous spaces $G/H$. Such minimal theories contain only (left) chiral fermions and in certain cases are inconsistent because of
We show that the half-maximal SU(2) gauged supergravity with topological mass term admits coupling of an arbitrary number of n vector multiplets. The chiral circle reduction of the ungauged theory in the dual 2-form formulation gives N=(1,0) supergra
We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0