ترغب بنشر مسار تعليمي؟ اضغط هنا

Subhaloes in Scale-Free Cosmologies

43   0   0.0 ( 0 )
 نشر من قبل Pascal Elahi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the dependence of the subhalo mass function on the spectral index n of the linear matter power spectrum using scale-free Einstein-de Sitter simulations with n=-1 and n=-2.5. We carefully consider finite volume effects that may call into question previous simulations of n<-2 power spectra. Subhaloes are found using a 6D friends-of-friends algorithm in all haloes originating from high-sigma peaks. For n=-1, we find that the cumulative subhalo mass function is independent of the parameters used in the subhalo finding algorithm and is consistent with the subhalo mass function found in LCDM simulations. In particular, the subhalo mass function is well fit by a power-law with an index of alpha=-0.9, that is the mass function has roughly equal mass in subhaloes per logarithmic interval in subhalo mass. Conversely, for n=-2.5, the algorithm parameters affect the subhalo mass function since subhaloes are more triaxial with less well defined boundaries. We find that the index alpha is generally larger with alpha>=-0.75. We infer that although the subhalo mass function appears to be independent of n so long as n>=-2, it begins to flatten as n->-3. Thus, the common practice of using alpha=-1.0 may greatly overestimate the number of subhaloes at the smallest scales in the CDM hierarchy.

قيم البحث

اقرأ أيضاً

The free streaming motion of dark matter particles imprints a cutoff in the matter power spectrum and set the scale of the smallest dark matter halo. Recent cosmological $N$-body simulations have shown that the central density cusp is much steeper in haloes near the free streaming scale than in more massive haloes. Here, we study the abundance and structure of subhaloes near the free streaming scale at very high redshift using a suite of unprecedentedly large cosmological $N$-body simulations, over a wide range of the host halo mass. The subhalo abundance is suppressed strongly below the free streaming scale, but the ratio between the subhalo mass function in the cutoff and no cutoff simulations is well fitted by a single correction function regardless of the host halo mass and the redshift. In subhaloes, the central slopes are considerably shallower than in field haloes, however, are still steeper than that of the NFW profile. Contrary, the concentrations are significantly larger in subhaloes than haloes and depend on the subhalo mass. We compare two methods to extrapolate the mass-concentration relation of haloes and subhaloes to z=0 and provide a new simple fitting function for subhaloes, based on a suite of large cosmological $N$-body simulations. Finally, we estimate the annihilation boost factor of a Milky-Way sized halo to be between 1.8 and 6.2.
We present a study of the substructure finder dependence of subhalo clustering in the Aquarius Simulation. We run 11 different subhalo finders on the haloes of the Aquarius Simulation and we study their differences in the density profile, mass fracti on and 2-point correlation function of subhaloes in haloes. We also study the mass and vmax dependence of subhalo clustering. As the Aquarius Simulation has been run at different resolutions, we study the convergence with higher resolutions. We find that the agreement between finders is at around the 10% level inside R200 and at intermediate resolutions when a mass threshold is applied, and better than 5% when vmax is restricted instead of mass. However, some discrepancies appear in the highest resolution, underlined by an observed resolution dependence of subhalo clustering. This dependence is stronger for the smallest subhaloes, which are more clustered in the highest resolution, due to the detection of subhaloes within subhaloes (the sub-subhalo term). This effect modifies the mass dependence of clustering in the highest resolutions. We discuss implications of our results for models of subhalo clustering and their relation with galaxy clustering.
In TeV scale B-L extension of the standard model with inverse seesaw, the Yukawa coupling of right-handed neutrinos can be of order one. This implies that the out of equilibrium condition for leptogenesis within standard cosmology is not satisfied. W e provide two scenarios for overcoming this problem and generating the desired value of the baryon asymmetry of the Universe. The first scenario is based on extra-dimensional braneworld effects that modify the Friedman equation. We show that in this case the value of the baryon asymmetry of the Universe constrains the five-dimensional Planck mass to be of order O(100) TeV. In the second scenario a non-thermal right-handed neutrino produced by the decay of inflaton is assumed. We emphasize that in this case, it is possible to generate the required baryon asymmetry of the Universe for TeV scale right-handed neutrinos.
60 - Atsushi Taruya 2016
We present a simple numerical scheme for perturbation theory (PT) calculations of large-scale structure. Solving the evolution equations for perturbations numerically, we construct the PT kernels as building blocks of statistical calculations, from w hich the power spectrum and/or correlation function can be systematically computed. The scheme is especially applicable to the generalized structure formation including modified gravity, in which the analytic construction of PT kernels is intractable. As an illustration, we show several examples for power spectrum calculations in $f(R)$ gravity and $Lambda$CDM models.
Predicting the spatial distribution of objects as a function of cosmology is an essential ingredient for the exploitation of future galaxy surveys. In this paper we show that a specially-designed suite of gravity-only simulations together with cosmol ogy-rescaling algorithms can provide the clustering of dark matter, haloes, and subhaloes with high precision. Specifically, with only 3 $N$-body simulations we obtain the power spectrum of dark matter at $z=0$ and $z=1$ to better than 3% precision for essentially all currently viable values of 8 cosmological parameters, including massive neutrinos and dynamical dark energy, and over the whole range of scales explored, 0.03 < $k/h^{-1}Mpc$ < 5. This precision holds at the same level for mass-selected haloes and for subhaloes selected according to their peak maximum circular velocity. As an initial application of these predictions, we successfully constrain $Omega_{rm m}$, $sigma_8$, and the scatter in subhalo-abundance-matching employing the projected correlation function of mock SDSS galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا