ترغب بنشر مسار تعليمي؟ اضغط هنا

New Constraints on the Asteroid 298 Baptistina, the Alleged Family Member of the K/T Impactor

33   0   0.0 ( 0 )
 نشر من قبل David Turner Dr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In their study Bottke et al. (2007) suggest that a member of the Baptistina asteroid family was the probable source of the K/T impactor which ended the reign of the Dinosaurs 65 Myr ago. Knowledge of the physical and material properties pertaining to the Baptistina asteroid family are, however, not well constrained. In an effort to begin addressing the situation, data from an international collaboration of observatories were synthesized to determine the rotational period of the familys largest member, asteroid 298 Baptistina (P_r = 16.23+-0.02 hrs). Discussed here are aspects of the terrestrial impact delivery system, implications arising from the new constraints, and prospects for future work.

قيم البحث

اقرأ أيضاً

232 - Debora Pavela 2020
The Karma asteroid family is a group of primitive asteroids in the middle part of the main belt, just at the outer edge of the 3J:1A mean-motion resonance. We obtained the list of the family members with 317 asteroids and estimated that it was formed by the catastrophic disruption of a parent body that was between 34 and 41 km in diameter. Based on the V-shape method, age of the Karma family is estimated to be about 137 Myr. A detailed dynamical map of the region combined with numerical simulations allowed us to reconstruct the long-term dynamical evolution of the family, and to identify the mechanisms responsible for this evolution. The numerical simulations successfully reproduced the main features in the orbital distribution of the family members but also showed that some regions of the Karma family could be missing. A more detailed analysis revealed that these regions likely consist of very dark objects, fainter than absolute magnitude H = 17, that have not yet been detected. Based on the obtained results, we concluded that magnitude-frequency distribution of family members up to H = 16 mag is neither affected by dynamical erosion nor observational incompleteness and therefore represents the result of collisional grinding of the original family population. Finally, we found that the Karma family have been supplying some asteroids to the near-Earth region via the 3J:1A resonance. Currently, there should about 10 family members larger than 1 km in diameter, orbiting in the near-Earth space.
43 - K. Yamaura 2004
The tri-layered perovskite Sr4Rh3O10 is reported for the first time. High-pressure and high-temperature heating (6 GPa and 1500 C) brought about successful preparation of a polycrystalline sample of the expected member at n=3 of Srn+1RhnO3n+1. Neutro n-diffraction studies revealed the orthorhombic crystal structure (Pbam) at room temperature and 3.4 K. Local structure distortions rotationally tilt the RhO6 octahedra ~12 degrees in the perovskite-based blocks along the c-axis, and approximately a 20 % disorder was found in sequence of the alternating rotational tilt. The sample was also investigated by measurements of specific heat, thermopower, magnetic susceptibility, and electrical resistivity. The data clearly revealed enhanced paramagnetism and electrically conducting character, which reflected nature of the correlated 4d5-electrons of Rh4+. However, no clear signs of magnetic and electrical transitions were observed above 2 K and below 70 kOe, providing a remarkable contrast to the rich electronic phenomena for the significantly relevant ruthenate, Sr4Ru3O10.
Recent dynamical analyses suggest that some Jupiter family comets (JFCs) may originate in the main asteroid belt instead of the outer solar system. This possibility is particularly interesting given evidence that icy main-belt objects are known to be present in the Themis asteroid family. We report results from dynamical analyses specifically investigating the possibility that icy Themis family members could contribute to the observed population of JFCs. Numerical integrations show that such dynamical evolution is indeed possible via a combination of eccentricity excitation apparently driven by the nearby 2:1 mean-motion resonance with Jupiter, gravitational interactions with planets other than Jupiter, and the Yarkovsky effect. We estimate that, at any given time, there may be tens of objects from the Themis family on JFC-like orbits with the potential to mimic active JFCs from the outer solar system, although not all, or even any, may necessarily be observably active. We find that dynamically evolved Themis family objects on JFC-like orbits have semimajor axes between 3.15 au and 3.40 au for the vast majority of their time on such orbits, consistent with the strong role that the 2:1 mean-motion resonance with Jupiter likely plays in their dynamical evolution. We conclude that a contribution from the Themis family to the active JFC population is plausible, although further work is needed to better characterize this contribution.
108 - B. Yang , J. Hanus , M. Broz 2020
The Euphrosyne asteroid family occupies a unique zone in orbital element space around 3.15 au and may be an important source of the low-albedo near-Earth objects. The parent body of this family may have been one of the planetesimals that delivered wa ter and organic materials onto the growing terrestrial planets. We aim to characterize the compositional properties as well as the dynamical properties of the family. We performed a systematic study to characterize the physical properties of the Euphrosyne family members via low-resolution spectroscopy using the IRTF telescope. In addition, we performed smoothed-particle hydrodynamics (SPH) simulations and N-body simulations to investigate the collisional origin, determine a realistic velocity field, study the orbital evolution, and constrain the age of the Euphrosyne family. Our spectroscopy survey shows that the family members exhibit a tight taxonomic distribution, suggesting a homogeneous composition of the parent body. Our SPH simulations are consistent with the Euphrosyne family having formed via a reaccumulation process instead of a cratering event. Finally, our N-body simulations indicate that the age of the family is 280 Myr +180/-80 Myr, which is younger than a previous estimate.
We report the discovery of a new asteroid family among the dark asteroids residing in the Phocaea region the Tamara family. We make use of available physical data to separate asteroids in the region according to their surface reflectance properties, and establish the membership of the family. We determine the slope of the cumulative magnitude distribution of the family, and find it to be significantly steeper than the corresponding slope of all the asteroids in the Phocaea region. This implies that sub-kilometer dark Phocaeas are comparable in number to bright S-type objects, shedding light on an entirely new aspect of the composition of small Phocaea asteroids. We then use the Yarkovsky V-shape based method and estimate the age of the family to be 264$pm$43 Myr. Finally, we carry out numerical simulations of the dynamical evolution of the Tamara family. The results suggest that up to 50 Tamara members with absolute magnitude H<19.4 may currently be found in the near-Earth region. Despite their relatively small number in the near-Earth space, the rate of Earth impacts by small, dark Phocaeas is non-negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا