ترغب بنشر مسار تعليمي؟ اضغط هنا

VLT/FORS1 spectrophotometry of the first planetary nebula discovered in the Phoenix dwarf galaxy

66   0   0.0 ( 0 )
 نشر من قبل Ivo Saviane
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ivo Saviane




اسأل ChatGPT حول البحث

Context: A planetary nebula (PN) candidate was discovered during FORS imaging of the Local Group dwarf galaxy Phoenix. Aims: Use this PN to complement abundances from red-giant stars. Methods: FORS spectroscopy was used to confirm the PN classification. Empirical methods and photoionization modeling were used to derive elemental abundances from the emission line fluxes and to characterize the central star. Results: For the elements deemed most reliable for measuring the metallicity of the interstellar medium (ISM) from which the PN formed, [O/H] ~ -0.46 and [Ar/H] ~ -1.03. [O/H] has lower measurement errors but greater uncertainties due to the unresolved issue of oxygen enrichment in the PN precursor star. Conclusions: Earlier than 2 Gyr ago (the lower limit of the derived age for the central star) the ISM had Z = 0.002--0.008, a range slightly more metal-rich than the one provided by stars. Comparing our PN-to-stellar values to surveys for other dwarf Local Group galaxies, Phoenix appears as an outlier.



قيم البحث

اقرأ أيضاً

The identification of two new Planetary Nebulae in the Sagittarius Dwarf Spheroidal Galaxy (Sgr) is presented. This brings the total number to four. The first, StWr 2-21, belongs to the main body of Sgr. The second, the halo PN BoBn 1, has a locati on, distance and velocity in agreement with the leading tidal tail of Sgr. We estimate that 10 per cent of the Galactic halo consists of Sgr debris. The specific frequency of PNe indicates a total luminosity of Sgr, including its tidal tails, of M_V=-14.1. StWr 2-21 shows a high abundance of [O/H]=-0.23, which confirms the high-metallicity population in Sgr uncovered by Bonaficio et al. (2004). The steep metallicity--age gradient in Sgr is due to ISM removal during the Galactic plane passages, ISM reformation due to stellar mass loss, and possibly accretion of metal-enriched gas from our Galaxy. The ISM re-formation rate of Sgr, from stellar mass loss, is 5 X 10^-4 M_sun yr^-1, amounting to ~10^6 M_sun per orbital period. HST images reveal well-developed bipolar morphologies, and provide clear detections of the central stars. All three stars with deep spectra show WR-lines, suggesting that the progenitor mass and metallicity determines whether a PN central star develops a WR spectrum. One Sgr PN belongs to the class of IR-[WC] stars. Expansion velocities are determined for three nebulae. Comparison with hydrodynamical models indicates an initial density profile of rho ~ r^-3. This is evidence for increasing mass-loss rates on the AGB. Peak mass-loss rates are indicated of ~ 10^-4 M_sun yr^-1. The IR-[WC] PN, He 2-436, provides the sole direct detection of dust in a dwarf spheroidal galaxy, to date.
(Abridged) The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever take n for a planetary nebula. Among these lines we detect very faint lines of several neutron-capture elements (Se, Kr, Rb, and Xe), which enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up in the progenitor star of NGC 3918. We find that Kr is strongly enriched in NGC 3918 and that Se is less enriched than Kr, in agreement with the results of previous papers and with predicted s-process nucleosynthesis. We also find that Xe is not as enriched by the s-process in NGC 3918 as is Kr and, therefore, that neutron exposure is typical of modestly sub-solar metallicity AGB stars. A clear correlation is found when representing [Kr/O] vs. log(C/O) for NGC 3918 and other objects with detection of multiple ions of Kr in optical data, confirming that carbon is brought to the surface of AGB stars along with s-processed material during third dredge-up episodes, as predicted by nucleosynthesis models. We also detect numerous refractory element lines (Ca, K, Cr, Mn, Fe, Co, Ni, and Cu). We compute physical conditions from a large number of diagnostics. Thanks to the high ionization of NGC 3918 we detect a large number of recombination lines of multiple ionization stages of C, N, O and Ne. The abundances obtained for these elements by using recently-determined state-of-the-art ICF schemes or simply adding ionic abundances are in very good agreement, demonstrating the quality of the recent ICF scheme for high ionization planetary nebulae.
We report on low-resolution multi-object spectroscopy of 30 faint targets (R ~ 24-25) in the HDF-S and AXAF deep field obtained with the VLT Focal Reducer/low dispersion Spectrograph (FORS1). Eight high-redshift galaxies with 2.75< z < 4 have been id entified. The spectroscopic redshifts are in good agreement with the photometric ones with a dispersion $sigma_z = 0.07$ at z<2 and $sigma_z = 0.16$ at z>2. The inferred star formation rates of the individual objects are moderate, ranging from a few to a few tens solar masses per year. Five out of the eight high-z objects do not show prominent emission lines. One object has a spectrum typical of an AGN. In the AXAF field two relatively close pairs of galaxies have been identified, with separations of 8.7 and 3.1 proper Mpc and mean redshifts of 3.11 and 3.93, respectively.
Transition type dwarf galaxies are thought to be systems undergoing the process of transformation from a star-forming into a passively evolving dwarf, which makes them particularly suitable to study evolutionary processes driving the existence of dif ferent dwarf morphological types. Here we present results from a spectroscopic survey of ~200 individual red giant branch stars in the Phoenix dwarf, the closest transition type with a comparable luminosity to classical dwarf galaxies. We measure a systemic heliocentric velocity V = -21.2 km/s. Our survey reveals the clear presence of prolate rotation, which is aligned with the peculiar spatial distribution of the youngest stars in Phoenix. We speculate that both features might have arisen from the same event, possibly an accretion of a smaller system. The evolved stellar population of Phoenix is relatively metal-poor (<[Fe/H]> = -1.49+/-0.04 dex) and shows a large metallicity spread ($sigma_{rm [Fe/H]} = 0.51pm0.04$,dex), with a pronounced metallicity gradient of -0.13+/-0.01 dex per arcmin similar to luminous, passive dwarf galaxies. We also report a discovery of an extremely metal-poor star candidate in Phoenix and discuss the importance of correcting for spatial sampling when interpreting the chemical properties of galaxies with metallicity gradients. This study presents a major leap forward in our knowledge of the internal kinematics of the Phoenix transition type dwarf galaxy, and the first wide area spectroscopic survey of its metallicity properties.
83 - N.R. Napolitano 2004
The Planetary Nebula Spectrograph is a dedicated instrument for measuring radial velocity of individual Planetary Nebulae (PNe) in galaxies. This new instrument is providing crucial data with which to probe the structure of dark halos in the outskirt s of elliptical galaxies in particular, which are traditionally lacking of easy interpretable kinematical tracers at large distance from the center. Preliminary results on a sample of intermediate luminosity galaxies have shown little dark matter within 5 ~ R_eff implying halos either not as massive or not as centrally concentrated as CDM predicts (Romanowsky et al. 2003). We briefly discuss whether this is consistent with a systematic trend of the dark matter content with the luminosity as observed in an extended sample of early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا