ﻻ يوجد ملخص باللغة العربية
We discuss the theoretical framework to describe quasiparticle electric and heat currents in NIS tunnel junctions in the dirty limit. The approach is based on quasiclassical Keldysh-Usadel equations. We apply this theory to diffusive NISS tunnel junctions. Here N and S are respectively normal metal and superconductor reservoirs, I is an insulator layer and S is a nonequilibrium superconducting lead. We calculate the quasiparticle electric and heat currents in such structures and consider the effect of inelastic relaxation in the S lead. We find that in the absence of strong relaxation the electric current and the cooling power for voltages $eV < Delta$ are suppressed. The value of this suppression scales with the diffusive transparency parameter. We ascribe this suppression to the effect of backtunneling of nonequilibrium quasiparticles into the normal metal.
We consider a model NISIN system with two junctions in series, where N is a normal metal, S is a superconductor and I is an insulator. We assume that the resistance of the first junction is high, while the resistance of the second one is low. In this
We investigate heat and charge transport in NNIS tunnel junctions in the diffusive limit. Here N and S are massive normal and superconducting electrodes (reservoirs), N is a normal metal strip, and I is an insulator. The flow of electric current in s
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. Firstly, when the injection rate of electrons exceeds the internal
The specific property of a planar tunnel junction with thin-film diffusive plates and long enough leads is an essential enhancement of its transmission coefficient compared to the bare transparency of the tunnel barrier [1,2]. In voltage-biased junct
We investigate heat and charge transport through a diffusive SIF1F2N tunnel junction, where N (S) is a normal (superconducting) electrode, I is an insulator layer and F1,2 are two ferromagnets with arbitrary direction of magnetization. The flow of an