ﻻ يوجد ملخص باللغة العربية
We propose to use the MT2 concept to measure the masses of all particles in SUSY-like events with two unobservable, identical particles. To this end we generalize the usual notion of MT2 and define a new MT2(n,p,c) variable, which can be applied to various subsystem topologies, as well as the full event topology. We derive analytic formulas for its endpoint MT2{max}(n,p,c) as a function of the unknown test mass Mc of the final particle in the subchain and the transverse momentum pT due to radiation from the initial state. We show that the endpoint functions MT2{max}(n,p,c)(Mc,pT) may exhibit three different types of kinks and discuss the origin of each type. We prove that the subsystem MT2(n,p,c) variables by themselves already yield a sufficient number of measurements for a complete determination of the mass spectrum (including the overall mass scale). As an illustration, we consider the simple case of a decay chain with up to three heavy particles, X2 -> X1 -> X0, which is rather problematic for all other mass measurement methods. We propose three different MT2-based methods, each of which allows a complete determination of the masses of particles X0, X1 and X2. The first method only uses MT2(n,p,c) endpoint measurements at a single fixed value of the test mass Mc. In the second method the unknown mass spectrum is fitted to one or more endpoint functions MT2{max}(n,p,c)(Mc,pT) exhibiting a kink. The third method is hybrid, combining MT2 endpoints with measurements of kinematic edges in invariant mass distributions. As a practical application of our methods, we show that the dilepton W+W- and tt-bar samples at the Tevatron can be used for an independent determination of the masses of the top quark, the W boson and the neutrino, without any prior assumptions.
Many beyond the Standard Model theories include a stable dark matter candidate that yields missing / invisible energy in collider detectors. If observed at the Large Hadron Collider, we must determine if its mass and other properties (and those of it
We study methods for reconstructing the momenta of invisible particles in cascade decay chains at hadron colliders. We focus on scenarios, such as SUSY and UED, in which new physics particles are pair produced. Their subsequent decays lead to two dec
We propose a new global and fully inclusive variable sqrt{s}_{min} for determining the mass scale of new particles in events with missing energy at hadron colliders. We define sqrt{s}_{min} as the minimum center-of-mass parton level energy consistent
If the Higgs is produced with a large enough cross section in the {em exclusive} reaction $p + bar{p} to p + H + bar{p}$ it will give rise to a peak at $M_H$ in the {em missing mass} ($MM$) spectrum, calculated from the 4-momenta of the beam particle
We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely d