ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-linear non-local Cosmology

47   0   0.0 ( 0 )
 نشر من قبل Nelson Nunes
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-local equations of motion contain an infinite number of derivatives and commonly appear in a number of string theory models. We review how these equations can be rewritten in the form of a diffusion-like equation with non-linear boundary conditions. Moreover, we show that this equation can be solved as an initial value problem once a set of non-trivial initial conditions that satisfy the boundary conditions is found. We find these initial conditions by looking at the linear approximation to the boundary conditions. We then numerically solve the diffusion-like equation, and hence the non-local equations, as an initial value problem for the full non-linear potential and subsequently identify the cases when inflation is attained.

قيم البحث

اقرأ أيضاً

We study non-local non-linear sigma models in arbitrary dimension, focusing on the scale invariant limit in which the scalar fields naturally have scaling dimension zero, so that the free propagator is logarithmic. The classical action is a bi-local integral of the square of the arc length between points on the target manifold. One-loop divergences can be canceled by introducing an additional bi-local term in the action, proportional to the target space laplacian of the square of the arc length. The metric renormalization that one encounters in the two-derivative non-linear sigma model is absent in the non-local case. In our analysis, the target space manifold is assumed to be smooth and Archimedean; however, the base space may be either Archimedean or ultrametric. We comment on the relation to higher derivative non-linear sigma models and speculate on a possible application to the dynamics of M2-branes.
78 - Pedro Carrilho 2019
In this thesis, we discuss several instances in which non-linear behaviour affects cosmological evolution in the early Universe. We begin by reviewing the standard cosmological model and the tools used to understand it theoretically and to compute it s observational consequences. This includes a detailed exposition of cosmological perturbation theory and the theory of inflation. We then describe the results in this thesis, starting with the non-linear evolution of the curvature perturbation in the presence of vector and tensor fluctuations, in which we identify the version of that variable that is conserved in the most general situation. Next, we use second order perturbation theory to describe the most general initial conditions for the evolution of scalar perturbations at second order in the standard cosmological model. We compute approximate solutions valid in the initial stages of the evolution, which can be used to initialize second order Boltzmann codes, and to compute many observables taking isocurvature modes into account. We then move on to the study of the inflationary Universe. We start by analysing a new way to compute the consequences of a sudden transition in the evolution of a scalar during inflation. We use the formalism of quantum quenches to compute the effect of those transitions on the spectral index of perturbations. Finally, we detail the results of the exploration of a multi-field model of inflation with a non-minimal coupling to gravity. We study popular attractor models in this regime in both the metric and the Palatini formulations of gravity and find all results for both the power spectrum and bispectrum of fluctuations to closely resemble those of the single-field case. In all systems under study we discuss the effects of non-linear dynamics and their importance for the resolution of problems in cosmology.
One of the fundamental assumptions of the standard $Lambda$CDM cosmology is that, on large scales, all the matter-energy components of the Universe share a common rest frame. This seems natural for the visible sector, that has been in thermal contact and tightly coupled in the primeval Universe. The dark sector, on the other hand, does not have any non-gravitational interaction known to date and therefore, there is no a priori reason to impose that it is comoving with ordinary matter. In this work we explore the consequences of relaxing this assumption and study the cosmology of non-comoving fluids. We show that it is possible to construct a homogeneous and isotropic cosmology with a collection of fluids moving with non-relativistic velocities. Our model extends $Lambda$CDM with the addition of a single free parameter $beta_0$, the initial velocity of the visible sector with respect to the frame that observes a homogeneous and isotropic universe. This modification gives rise to a rich phenomenology, while being consistent with current observations for $beta_0<1.6times 10^{-3} text{(95% CL)}$. This work establishes the general framework to describe a non-comoving cosmology and extracts its first observational consequences for large-scale structure. Among the observable effects, we find sizeable modifications in the density-velocity and density-lensing potential cross-correlation spectra. These corrections give rise to deviations from statistical isotropy with a dipolar structure. The relative motion between the different fluids also couples the vector and scalar modes, the latter acting as sources for metric vector modes and vorticity for all the species.
98 - Fabien Lacasa 2019
Interest rises to exploit the full shape information of the galaxy power spectrum, as well as pushing analyses to smaller non-linear scales. Here I use the halo model to quantify the information content in the tomographic angular power spectrum of ga laxies, for future high resolution surveys : Euclid and SKA2. I study how this information varies as a function of the scale cut applied, either with angular cut $ell_{max}$ or physical cut kmax. For this, I use analytical covariances with the most complete census of non-Gaussian terms, which proves critical. I find that the Fisher information on most cosmological and astrophysical parameters follows a striking behaviour. Beyond the perturbative regime we first get decreasing returns : the information keeps rising but the slope slows down until reaching a saturation. The location of this plateau is a bit beyond the reach of current modeling methods : k $sim$ 2 Mpc$^{-1}$ and slightly depends on the parameter and redshift bin considered. I explain the origin of this plateau, which is due to non-linear effects both on the power spectrum, and more importantly on non-Gaussian covariance terms. Then, pushing further on I find that information rises again in the highly non-linear regime. I find that the cosmological information in this small scale miracle can indeed be disentangled from astrophysical information and yield large improvements. Pushing SKA2 analysis from kmax=1 Mpc$^{-1}$ to kmax=10 Mpc$^{-1}$ can improve the error bar on $sigma_8$ by a factor 9 and the error bar on the Dark Energy equation of state $w_0$ by a factor 5. Finally I show that high order statistics beyond the power spectrum should yield further significant improvements in this regime, with the improvements increasing when pushing kmax. Data and notebooks reproducing all plots and results will be made available at url{https://github.com/fabienlacasa/SmallScaleMiracle}
We prove unique continuation properties of solutions to a large class of nonlinear, non-local dispersive equations. The goal is to show that if $u_1,,u_2$ are two suitable solutions of the equation defined in $mathbb R^ntimes[0,T]$ such that for some non-empty open set $Omegasubset mathbb R^ntimes[0,T]$, $u_1(x,t)=u_2(x,t)$ for $(x,t) in Omega$, then $u_1(x,t)=u_2(x,t)$ for any $(x,t)inmathbb R^ntimes[0,T]$. The proof is based on static arguments. More precisely, the main ingredient in the proofs will be the unique continuation properties for fractional powers of the Laplacian established by Ghosh, Salo and Ulhmann in cite{GhSaUh}, and some extensions obtained here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا