ترغب بنشر مسار تعليمي؟ اضغط هنا

Supergiant Fast X-ray Transients: interpretation of archival INTEGRAL data

80   0   0.0 ( 0 )
 نشر من قبل Lorenzo Ducci
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Ducci




اسأل ChatGPT حول البحث

INTEGRAL monitoring of the Galactic Plane in the last 5 years revealed a new subclass of High Mass X-ray Binaries (HMXBs), the Supergiant Fast X-ray Transients (SFXTs). They display flares lasting from minutes to hours, with peak luminosity of 1E36-1E37 erg/s and a frequent long term flaring activity reaching an X-ray luminosity of 1E33-1E34 erg/s, as recently detected by the Swift satellite. The quiescent level is around 1E32 erg/s. We performed a systematic re-analysis of archival INTEGRAL data of four SFXTs: IGRJ16479-4514, XTEJ1739-302, IGRJ17544-2619, IGRJ18410-0535. This led to the discovery of previously unnoticed outbursts from IGRJ16479-4514 and IGRJ17544-2619. We discuss these results in the framework of the different structure of the supergiant wind proposed to explain the outburst from this new class of sources.


قيم البحث

اقرأ أيضاً

We present the discovery of two new X-ray transients in archival Chandra data. The first transient, XRT 110103, occurred in January 2011 and shows a sharp rise of at least three orders of magnitude in count rate in less than 10 s, a flat peak for abo ut 20 s and decays by two orders of magnitude in the next 60 s. We find no optical or infrared counterpart to this event in preexisting survey data or in an observation taken by the SIRIUS instrument at the Infrared Survey Facility 2.1 yr after the transient, providing limiting magnitudes of J>18.1, H>17.6 and Ks>16.3. This event shows similarities to the transient previously reported in Jonker et al. which was interpreted as the possible tidal disruption of a white dwarf by an intermediate mass black hole. We discuss the possibility that these transients originate from the same type of event. If we assume these events are related a rough estimate of the rates gives 1.4*10^5 per year over the whole sky with a peak 0.3-7 keV X-ray flux greater than 2*10^-10 erg cm^-2 s^-1 . The second transient, XRT 120830, occurred in August 2012 and shows a rise of at least three orders of magnitude in count rate and a subsequent decay of around one order of magnitude all within 10 s, followed by a slower quasi-exponential decay over the remaining 30 ks of the observation. We detect a likely infrared counterpart with magnitudes J=16.70+/-0.06, H=15.92+/-0.04 and Ks=15.37+/-0.06 which shows an average proper motion of 74+/-19 milliarcsec per year compared to archival 2MASS observations. The JHKs magnitudes, proper motion and X-ray flux of XRT 120830 are consistent with a bright flare from a nearby late M or early L dwarf.
We review the status of our knowledge on supergiant fast X-ray transients (SFXTs), a new hot topic in multi wavelength studies of binaries. We discuss the mechanisms believed to power these transients and then highlight the unique contribution Swift is giving to this field, and how new technology complements and sometimes changes the view of things.
460 - Lara Sidoli 2013
Supergiant Fast X-ray Transients are a class of Galactic High Mass X-ray Binaries with supergiant companions. Their extreme transient X-ray flaring activity was unveiled thanks to INTEGRAL/IBIS observations. The SFXTs dynamic range, with X-ray lumino sities from 1E32 erg/s to 1E37 erg/s, and long time intervals of low X-ray emission, are puzzling, given that both their donor star properties and their orbital and spin periodicities seem very similar to those displayed by massive binaries with persistent X-ray emission. Clumpy supergiant winds, accretion barriers, orbital geometries and wind anisotropies are often invoked to explain their behavior, but still several open issues remain. A review of the main recent observational results will be outlined, together with a summary of the new scenarios proposed to explain their bright flaring X-ray activity. The main result of a long Suzaku observation of the SFXT IGRJ16479-4514 with the shortest orbital period is also briefly summarized. The observation of the X-ray eclipse in this source allowed us to directly probe the supergiant wind density at the orbital separation, leading to the conclusion that it is too large to justify the low X-ray luminosity. A mechanism reducing the accretion rate onto the compact object is required.
85 - L. Sidoli , A. Paizis 2016
We have characterized the typical temporal behaviour of the bright X-ray flares detected from the three Supergiant Fast X-ray Transients showing the most extreme transient behaviour (XTEJ1739-302, IGRJ17544-2619, SAXJ1818.6-1703). We focus here on th e cumulative distributions of the waiting-time (time interval between two consecutive X-ray flares), and the duration of the hard X-ray activity (duration of the brightest phase of an SFXT outburst), as observed by INTEGRAL/IBIS in the energy band 17-50 keV. Adopting the cumulative distribution of waiting-times, it is possible to identify the typical timescale that clearly separates different outbursts, each composed by several single flares at ks timescale. This allowed us to measure the duration of the brightest phase of the outbursts from these three targets, finding that they show heavy-tailed cumulative distributions. We observe a correlation between the total energy emitted during SFXT outbursts and the time interval covered by the outbursts (defined as the elapsed time between the first and the last flare belonging to the same outburst as observed by INTEGRAL). We show that temporal properties of flares and outbursts of the sources, which share common properties regardless different orbital parameters, can be interpreted in the model of magnetized stellar winds with fractal structure from the OB-supergiant stars.
88 - L. Ducci 2010
We performed a systematic analysis of all INTEGRAL observations from 2003 to 2009 of 14 Supergiant Fast X-ray Transients (SFXTs), implying a net exposure time of about 30Ms. For each source we obtained lightcurves and spectra (3-100keV), discovering several new outbursts. We discuss the X-ray behaviour of SFXTs emerging from our analysis in the framework of the clumpy wind accretion mechanism we proposed (Ducci et al. 2009). We discuss the effect of X-ray photoionization on accretion in close binary systems like IGRJ16479-4514 and IGRJ17544-2619. We show that, because of X-ray photoionization, there is a high probability of formation of an accretion disk from capture of angular momentum in IGRJ16479-4514, and we suggest that the formation of transient accretion disks could be responsible of part of the flaring activity in SFXTs with narrow orbits. We also propose an alternative way to explain the origin of flares with peculiar shapes observed in our analysis applying the model of Lamb et al. (1977), which is based on the accretion via Rayleigh-Taylor instability, and was originally proposed to explain type II bursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا