ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient seeding techniques for protein similarity search

133   0   0.0 ( 0 )
 نشر من قبل Laurent Noe
 تاريخ النشر 2008
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets.We then perform an analysis of seeds built over those alphabet and compare them with the standard Blastp seeding method [2,3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seed is less expressive (but less costly to implement) than the accumulative principle used in Blastp and vector seeds, our seeds show a similar or even better performance than Blastp on Bernoulli models of proteins compatible with the common BLOSUM62 matrix.



قيم البحث

اقرأ أيضاً

129 - Van Hoa Nguyen 2008
This report presents the implementation of a protein sequence comparison algorithm specifically designed for speeding up time consuming part on parallel hardware such as SSE instructions, multicore architectures or graphic boards. Three programs have been developed: PLAST-P, TPLAST-N and PLAST-X. They provide equivalent results compared to the NCBI BLAST family programs (BLAST-P, TBLAST-N and BLAST-X) with a speed-up factor ranging from 5 to 10.
A method to search for local structural similarities in proteins at atomic resolution is presented. It is demonstrated that a huge amount of structural data can be handled within a reasonable CPU time by using a conventional relational database manag ement system with appropriate indexing of geometric data. This method, which we call geometric indexing, can enumerate ligand binding sites that are structurally similar to sub-structures of a query protein among more than 160,000 possible candidates within a few hours of CPU time on an ordinary desktop computer. After detecting a set of high scoring ligand binding sites by the geometric indexing search, structural alignments at atomic resolution are constructed by iteratively applying the Hungarian algorithm, and the statistical significance of the final score is estimated from an empirical model based on a gamma distribution. Applications of this method to several protein structures clearly shows that significant similarities can be detected between local structures of non-homologous as well as homologous proteins.
From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading to those particular data can then be developed. This method is exemplified for protein-protein interaction networks. Traces of their evolutionary history of duplication and divergence processes are identified. In particular, we can identify typical specific features that robustly distinguish protein-protein interaction networks from other classes of networks, in spite of possible statistical fluctuations of the underlying data.
We apply the concept of subset seeds proposed in [1] to similarity search in protein sequences. The main question studied is the design of efficient seed alphabets to construct seeds with optimal sensitivity/selectivity trade-offs. We propose several different design methods and use them to construct several alphabets. We then perform a comparative analysis of seeds built over those alphabets and compare them with the standard BLASTP seeding method [2], [3], as well as with the family of vector seeds proposed in [4]. While the formalism of subset seeds is less expressive (but less costly to implement) than the cumulative principle used in BLASTP and vector seeds, our seeds show a similar or even better performance than BLASTP on Bernoulli models of proteins compatible with the common BLOSUM62 matrix. Finally, we perform a large-scale benchmarking of our seeds against several main databases of protein alignments. Here again, the results show a comparable or better performance of our seeds vs. BLASTP.
Machine-learning models that learn from data to predict how protein sequence encodes function are emerging as a useful protein engineering tool. However, when using these models to suggest new protein designs, one must deal with the vast combinatoria l complexity of protein sequences. Here, we review how to use a sequence-to-function machine-learning surrogate model to select sequences for experimental measurement. First, we discuss how to select sequences through a single round of machine-learning optimization. Then, we discuss sequential optimization, where the goal is to discover optimized sequences and improve the model across multiple rounds of training, optimization, and experimental measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا