ﻻ يوجد ملخص باللغة العربية
We find necessary and sufficient conditions for the foliation defined by level sets of a function f(x_{1},...,x_{n}) to be totally geodesic in a torsion-free connection and apply them to find the conditions for d-webs of hypersurfaces to be geodesic, and in the case of flat connections, for d-webs (d > n) of hypersurfaces to be hyperplanar webs. These conditions are systems of generalized Euler equations, and for flat connections we give an explicit construction of their solutions.
We prove that any planar 4-web defines a unique projective structure in the plane in such a way that the leaves of the foliations are geodesics of this projective structure. We also find conditions for the projective structure mentioned above to cont
In the present paper we study geometric structures associated with webs of hypersurfaces. We prove that with any geodesic (n+2)-web on an n-dimensional manifold there is naturally associated a unique projective structure and, provided that one of web
We present a complete description of a class of linearizable planar geodesic webs which contain a parallelizable 3-subweb.
We find an invariant characterization of planar webs of maximum rank. For 4-webs, we prove that a planar 4-web is of maximum rank three if and only if it is linearizable and its curvature vanishes. This result leads to the direct web-theoretical proo
In the present paper we define Samuelsons webs and their rank. The main result of the paper is the proof that the rank of the Samuelson webs does not exceed 6, as well as finding the conditions under which this rank is maximal for the general Samuelson webs as well as for their singular cases.