ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting the Drug Release Kinetics of Matrix Tablets

236   0   0.0 ( 0 )
 نشر من قبل Peter Hinow
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we develop two mathematical models to predict the release kinetics of a water soluble drug from a polymer/excipient matrix tablet. The first of our models consists of a random walk on a weighted graph, where the vertices of the graph represent particles of drug, excipient and polymer, respectively. The graph itself is the contact graph of a multidisperse random sphere packing. The second model describes the dissolution and the subsequent diffusion of the active drug out of a porous matrix using a system of partial differential equations. The predictions of both models show good qualitative agreement with experimental release curves. The models will provide tools for designing better controlled release devices.



قيم البحث

اقرأ أيضاً

Nowadays different experimental techniques, such as single molecule or relaxation experiments, can provide dynamic properties of biomolecular systems, but the amount of detail obtainable with these methods is often limited in terms of time or spatial resolution. Here we use state-of-the-art computational techniques, namely atomistic molecular dynamics and Markov state models, to provide insight into the rapid dynamics of short RNA oligonucleotides, in order to elucidate the kinetics of stacking interactions. Analysis of multiple microsecond-long simulations indicates that the main relaxation modes of such molecules can consist of transitions between alternative folded states, rather than between random coils and native structures. After properly removing structures that are artificially stabilized by known inaccuracies of the current RNA AMBER force field, the kinetic properties predicted are consistent with the timescales of previously reported relaxation experiments.
Gaining more comprehensive knowledge about drug-drug interactions (DDIs) is one of the most important tasks in drug development and medical practice. Recently graph neural networks have achieved great success in this task by modeling drugs as nodes a nd drug-drug interactions as links and casting DDI predictions as link prediction problems. However, correlations between link labels (e.g., DDI types) were rarely considered in existing works. We propose the graph energy neural network (GENN) to explicitly model link type correlations. We formulate the DDI prediction task as a structure prediction problem and introduce a new energy-based model where the energy function is defined by graph neural networks. Experiments on two real-world DDI datasets demonstrated that GENN is superior to many baselines without consideration of link type correlations and achieved $13.77%$ and $5.01%$ PR-AUC improvement on the two datasets, respectively. We also present a case study in which mname can better capture meaningful DDI correlations compared with baseline models.
Drug delivery systems represent a promising strategy to treat cancer and to overcome the side effects of chemotherapy. In particular, polymeric nanocontainers have attracted major interest because of their structural and morphological advantages and the variety of polymers that can be used, allowing the synthesis of materials capable of responding to the biochemical alterations of the tumour microenvironment. While experimental methodologies can provide much insight, the generation of experimental data across a wide parameter space is usually prohibitively time consuming and/or expensive. To better understand the influence of varying design parameters on the drug release profile and drug kinetics involved, appropriately-designed mathematical models are of great benefit. Here, we developed a novel mathematical model to describe drug transport within, and release from, a hollow nanocontainer consisting of a core and a pH-responsive polymeric shell. The two-layer mathematical model fully accounts for drug dissolution, diffusion and interaction with polymer. We generated experimental drug release profiles using daunorubicin and [Cu(TPMA)(Phenantroline)](ClO_4)_2 as model drugs, for which the nanocontainers exhibited excellent encapsulation ability. The in vitro drug release behaviour was studied under different conditions, where the system proved capable of responding to the selected pH stimuli by releasing a larger amount of drug in an acidic than in the physiological environments. By comparing the results of the mathematical model with our experimental data, we were able to identify the model parameter values that best-fit the data and demonstrate that the model is capable of describing the phenomena at hand. The proposed methodology can be used to describe and predict the release profiles for a variety of drug delivery systems.
102 - Ishani Mondal 2020
Off-the-shelf biomedical embeddings obtained from the recently released various pre-trained language models (such as BERT, XLNET) have demonstrated state-of-the-art results (in terms of accuracy) for the various natural language understanding tasks ( NLU) in the biomedical domain. Relation Classification (RC) falls into one of the most critical tasks. In this paper, we explore how to incorporate domain knowledge of the biomedical entities (such as drug, disease, genes), obtained from Knowledge Graph (KG) Embeddings, for predicting Drug-Drug Interaction from textual corpus. We propose a new method, BERTKG-DDI, to combine drug embeddings obtained from its interaction with other biomedical entities along with domain-specific BioBERT embedding-based RC architecture. Experiments conducted on the DDIExtraction 2013 corpus clearly indicate that this strategy improves other baselines architectures by 4.1% macro F1-score.
The human aorta is a high-risk area for vascular diseases, which are commonly restored by thoracic endovascular aortic repair. In this paper, we report a promising shear-activated targeted nanoparticle drug delivery strategy to assist in the treatmen t of coarctation of the aorta and aortic aneurysm. Idealized three-dimensional geometric models of coarctation of the aorta and aortic aneurysm are designed, respectively. The unique hemodynamic environment of the diseased aorta is used to improve nanoparticle drug delivery. Micro-carriers with nanoparticle drugs would be targeting activated to release nanoparticle drugs by local abnormal shear stress rate (SSR). Coarctation of the aorta provides a high SSR hemodynamic environment, while the aortic aneurysm is exposed to low SSR. Results show that the upstream near-wall area of the diseased location is an ideal injection point for the micro-carriers, which could be activated by the abnormal SSR. Released nanoparticle drugs would be successfully targeted delivered to the aortic diseased wall. Besides, coarctation of the aorta would prevent blood flow to the descending aorta, while the effect of the aortic aneurysm on the blood flow distribution is negligible. This study preliminary demonstrates the feasibility of shear-activated targeted nanoparticle drug delivery in the treatment of aortic diseases and provides a theoretical basis for developing novel therapy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا