ترغب بنشر مسار تعليمي؟ اضغط هنا

The 6-GHz Multibeam Maser Survey I. Techniques

97   0   0.0 ( 0 )
 نشر من قبل James Green
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new 7-beam 6-7 GHz receiver has been built to survey the Galaxy and the Magellanic Clouds for newly forming high-mass stars that are pinpointed by strong methanol maser emission at 6668 MHz. The receiver was jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF) and allows simultaneous coverage at 6668 and 6035 MHz. It was successfully commissioned at Parkes in January 2006 and is now being used to conduct the Parkes-Jodrell multibeam maser survey of the Milky Way. This will be the first systematic survey of the entire Galactic plane for masers of not only 6668-MHz methanol, but also 6035-MHz excited-state hydroxyl. The survey is two orders of magnitude faster than most previous systematic surveys and has an rms noise level of ~0.17 Jy.This paper describes the observational strategy, techniques and reduction procedures of the Galactic and Magellanic Cloud surveys, together with deeper, pointed, follow-up observations and complementary observations with other instruments. It also includes an estimate of the survey detection efficiency. The 111 days of observations with the Parkes telescope have so far yielded >800 methanol sources, of which ~350 are new discoveries. The whole project will provide the first comprehensive Galaxy-wide catalogue of 6668-MHz and 6035-MHz masers.



قيم البحث

اقرأ أيضاً

We have compared the occurrence of 6.7-GHz and 12.2-GHz methanol masers with 22-GHz water masers and 6035-MHz excited-state OH masers in the 100 square degree region of the southern Galactic plane common to the Methanol Multibeam (MMB) and H2O southe rn Galactic Plane surveys (HOPS). We find the most populous star formation species to be 6.7-GHz methanol, followed by water, then 12.2-GHz and, finally, excited-state OH masers. We present association statistics, flux density (and luminosity where appropriate) and velocity range distributions across the largest, fully surveyed portion of the Galactic plane for four of the most common types of masers found in the vicinity of star formation regions. Comparison of the occurrence of the four maser types with far-infrared dust temperatures shows that sources exhibiting excited-state OH maser emission are warmer than sources showing any of the other three maser types. We further find that sources exhibiting both 6.7-GHz and 12.2-GHz methanol masers are warmer than sources exhibiting just 6.7-GHz methanol maser emission. These findings are consistent with previously made suggestions that both OH and 12.2-GHz methanol masers generally trace a later stage of star formation compared to other common maser types.
We present the results of the first complete unbaised survey of the Galactic Plane for 6035-MHz excited-state hydroxyl masers undertaken as part of the Methanol Multibeam Survey. These observations cover the Galactic longitude ranges $186^{circ}< l < 60^{circ}$ including the Galactic Centre. We report the detection of 127 excited-state hydroxyl masers within the survey region, 47 being new sources. The positions of new detections were determined from interferometric observations with the Australia Telescope Compact Array. We discuss the association of 6035-MHz masers in our survey with the 6668-MHz masers from the MMB Survey, finding 37 likely methanol-excited-state hydroxyl masers maser pairs with physical separations of <=0.03pc and 55 pairings separated by <=0.1pc. Using these we calculate for the first time an excited-state hydroxyl maser life time of between 3.3x10^3 and 8.3x10^3 years. We also discuss the variability of the 6035-MHz masers and detection rates of counterpart 6030-MHz excited-state hydroxyl masers (28% of our sample having detection at both frequencies).
We present the results of the first complete survey of the Large and Small Magellanic Clouds for 6668-MHz methanol and 6035-MHz excited-state hydroxyl masers. In addition to the survey, higher-sensitivity targeted searches towards known star-formatio n regions were conducted. The observations yielded the discovery of a fourth 6668-MHz methanol maser in the Large Magellanic Cloud (LMC), found towards the star-forming region N160a, and a second 6035-MHz excited-state hydroxyl maser, found towards N157a. We have also re-observed the three previously known 6668-MHz methanol masers and the single 6035-MHz hydroxyl maser. We failed to detect emission from either transition in the Small Magellanic Cloud. All observations were initially made using the Methanol Multibeam (MMB) survey receiver on the 64-m Parkes telescope as part of the MMB project and accurate positions have been measured with the Australia Telescope Compact Array (ATCA). We compare the maser populations in the Magellanic Clouds with those of our Galaxy and discuss their implications for the relative rates of massive star-formation, heavy metal abundance, and the abundance of complex molecules. The LMC maser populations are demonstrated to be smaller than their Milky Way counterparts. Methanol masers are under-abundant by a factor of ~45, whilst hydroxyl and water masers are a factor of ~10 less abundant than our Galaxy.
The Central Molecular Zone (CMZ) spans the inner ~450 pc (3 degrees) of our Galaxy. This region is defined by its enhanced molecular emission and contains 5% of the entire Galaxys molecular gas mass. However, the number of detected star forming sites towards the CMZ may be low for the amount of molecular gas that is present, and improved surveys of star formation indicators can help clarify this. With the Karl G Jansky Very Large Array (VLA), we conducted a blind survey of 6.7 GHz methanol masers spanning the inner 3deg x 40arcmin (450 pc x 100 pc) of the Galaxy. We detected 43 methanol masers towards 28 locations, 16 of which are new detections. The velocities of most of these masers are consistent with being located within the CMZ. A majority of the detected methanol masers are distributed towards positive Galactic longitudes, similar to 2/3 of the molecular gas mass distributed at positive Galactic longitudes. The 6.7 GHz methanol maser is an excellent indicator of high mass (>8 solar mass) star formation, with new detections indicating sites of massive star formation in the CMZ.
Next-generation of satellite communication (SatCom) networks are expected to support extremely high data rates for a seamless integration into future large satellite-terrestrial networks. In view of the coming spectral limitations, the main challenge is to reduce the cost per bit, which can only be achieved by enhancing the spectral efficiency. In addition, the capability to quickly and flexibly assign radio resources according to the traffic demand distribution has become a must for future multibeam broadband satellite systems. This article presents the radio resource management problems encountered in the design of future broadband SatComs and provides a comprehensive overview of the available techniques to address such challenges. Firstly, we focus on the demand-matching formulation of the power and bandwidth assignment. Secondly, we present the scheduling design in practical multibeam satellite systems. Finally, a number of future challenges and the respective open research topics are described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا