ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics and modulation of ring dark soliton in 2D Bose-Einstein condensates with tunable interaction both analytically and numerically. The analytic solutions of ring dark soliton are derived by using a new transformation method. For shallow ring dark soliton, it is stable when the ring is slightly distorted, while for large deformation of the ring, vortex pairs appear and they demonstrate novel dynamical behaviors: the vortex pairs will transform into dark lumplike solitons and revert to ring dark soliton periodically. Moreover, our results show that the dynamical evolution of the ring dark soliton can be dramatically affected by Feshbach resonance, and the lifetime of the ring dark soliton can be largely extended which offers a useful method for observing the ring dark soliton in future experiments.
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the g
We consider the dynamics of dark matter solitons moving through non-uniform cigar-shaped Bose-Einstein condensates described by the mean field Gross-Pitaevskii equation with generalized nonlinearities, in the case when the condition for the modulatio
Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially res
In this work, we explore systematically various SO(2)-rotation-induced multiple dark-dark soliton breathing patterns obtained from stationary and spectrally stable multiple dark-bright and dark-dark waveforms in trapped one-dimensional, two-component
We present a quantum mechanical treatment of the mechanical stirring of Bose-Einstein condensates using classical field techniques. In our approach the condensate and excited modes are described using a Hamiltonian classical field method in which the