ﻻ يوجد ملخص باللغة العربية
Based on the concept of sub-wavelength imaging through compensated bilayer of anisotropic metamaterials (AMMs), which is an expansion of the perfect lens configuration, we propose two dimensional prism pair structures of compensated AMMs that are capable of manipulating two dimensional sub-wavelength images. We demonstrate that through properly designed symmetric and asymmetric compensated prism pair structures planar image rotation with arbitrary angle, lateral image shift, as well as image magnification could be achieved with sub-wavelength resolution. Both theoretical analysis and full wave electromagnetic simulations have been employed to verify the properties of the proposed prism structures. Utilizing the proposed AMM prisms, flat optical image of objects with sub-wavelength features can be projected and magnified to wavelength scale allowing for further optical processing of the image by conventional optics.
The exciting discovery of bi-dimensional systems in condensed matter physics has triggered the search of their photonic analogues. In this letter, we describe a general scheme to reproduce some of the systems ruled by a tight-binding Hamiltonian in a
Exact solutions are obtained for all the modes of wave propagation along an anisotropic cylindrical waveguide. Closed-form expressions for the energy flow on the waveguide are also derived. For extremely anisotropic waveguide where the transverse per
Hydroelastic surface waves propagate at the surface of water covered by a thin elastic sheet and can be directly measured with accurate space and time resolution. We present an experimental approach using hydroelastic waves that allows us to control
High-index dielectrics can confine light into nano-scale leading to enhanced nonlinear response. However, increased momentum in these media can deteriorate the overlap between different harmonics which hinders efficient nonlinear interaction in wavel
The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can a