ﻻ يوجد ملخص باللغة العربية
A set of N independent Gaussian linear time invariant systems is observed by M sensors whose task is to provide the best possible steady-state causal minimum mean square estimate of the state of the systems, in addition to minimizing a steady-state measurement cost. The sensors can switch between systems instantaneously, and there are additional resource constraints, for example on the number of sensors which can observe a given system simultaneously. We first derive a tractable relaxation of the problem, which provides a bound on the achievable performance. This bound can be computed by solving a convex program involving linear matrix inequalities. Exploiting the additional structure of the sites evolving independently, we can decompose this program into coupled smaller dimensional problems. In the scalar case with identical sensors, we give an analytical expression of an index policy proposed in a more general context by Whittle. In the general case, we develop open-loop periodic switching policies whose performance matches the bound arbitrarily closely.
This paper presents a novel design methodology for optimal transmission policies at a smart sensor to remotely estimate the state of a stable linear stochastic dynamical system. The sensor makes measurements of the process and forms estimates of the
The aim of this paper is to propose a new numerical approximation of the Kalman-Bucy filter for semi-Markov jump linear systems. This approximation is based on the selection of typical trajectories of the driving semi-Markov chain of the process by u
This paper presents a design methodology for optimal transmission energy allocation at a sensor equipped with energy harvesting technology for remote state estimation of linear stochastic dynamical systems. In this framework, the sensor measurements as noi
Kalman Filters are one of the most influential models of time-varying phenomena. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption in a variety of disciplines. Motivated by recent varia
Various methods have been proposed for the nonlinear filtering problem, including the extended Kalman filter (EKF), iterated extended Kalman filter (IEKF), unscented Kalman filter (UKF) and iterated unscented Kalman filter (IUKF). In this paper two n