ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-IR Search for Lensed Supernovae Behind Galaxy Clusters - II. First Detection and Future Prospects

501   0   0.0 ( 0 )
 نشر من قبل Ariel Goobar
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Powerful gravitational telescopes in the form of massive galaxy clusters can be used to enhance the light collecting power over a limited field of view by about an order of magnitude in flux. This effect is exploited here to increase the depth of a survey for lensed supernovae at near-IR wavelengths. A pilot SN search program conducted with the ISAAC camera at VLT is presented. Lensed galaxies behind the massive clusters A1689, A1835 and AC114 were observed for a total of 20 hours split into 2, 3 and 4 epochs respectively, separated by approximately one month to a limiting magnitude J<24 (Vega). Image subtractions including another 20 hours worth of archival ISAAC/VLT data were used to search for transients with lightcurve properties consistent with redshifted supernovae, both in the new and reference data. The feasibility of finding lensed supernovae in our survey was investigated using synthetic lightcurves of supernovae and several models of the volumetric Type Ia and core-collapse supernova rates as a function of redshift. We also estimate the number of supernova discoveries expected from the inferred star formation rate in the observed galaxies. The methods consistently predict a Poisson mean value for the expected number of SNe in the survey between N_SN=0.8 and 1.6 for all supernova types, evenly distributed between core collapse and Type Ia SN. One transient object was found behind A1689, 0.5 from a galaxy with photometric redshift z_gal=0.6 +- 0.15. The lightcurve and colors of the transient are consistent with being a reddened Type IIP SN at z_SN=0.59. The lensing model predicts 1.4 magnitudes of magnification at the location of the transient, without which this object would not have been detected in the near-IR ground based search described in this paper (unlensed magnitude J~25). (abridged)

قيم البحث

اقرأ أيضاً

We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and Abell 383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope (HST) optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approximately 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approximately 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak lensing maps of the clusters: 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.
Measuring time delays from strongly lensed supernovae (SNe) is emerging as a novel and independent tool for estimating the Hubble constant $(H_0)$. This is very important given the recent discord in the value of $H_0$ from two methods that probe diff erent distance ranges. The success of this technique will rely of our ability to discover strongly lensed SNe with measurable time delays. Here, we present the magnifications and the time delays for the multiply-imaged galaxies behind the Hubble Frontier Fields (HFF) galaxy clusters, by using recently published lensing models. Continuing on our previous work done for Abell 1689 (A1689) and Abell 370, we also show the prospects of observing strongly lensed SNe behind the HFF clusters with the upcoming James Webb Space Telescope (JWST). With four 1-hour visits in one year, the summed expectations of all six HFF clusters are $sim0.5$ core-collapse (CC) SNe and $sim0.06$ Type Ia SNe (SNe Ia) in F115W band, while with F150W the expectations are higher, $sim0.9$ CC SNe and $sim0.06$ SNe Ia. These estimates match those expected by only surveying A1689, proving that the performance of A1689 as gravitational telescope is superior. In the five HFF clusters presented here, we find that F150W will be able to detect SNe Ia (SNe IIP) exploding in 93 (80) pairs multiply-imaged galaxies with time delays of less than 5 years.
Motivated by the advantages of observing at near-IR wavelengths, we investigate Type II supernovae (SNe II) as distance indicators at those wavelengths through the Photospheric Magnitude Method (PMM). For the analysis, we use $BVIJH$ photometry and o ptical spectroscopy of 24 SNe II during the photospheric phase. To correct photometry for extinction and redshift effects, we compute total-to-selective broadband extinction ratios and $K$-corrections up to $z=0.032$. To estimate host galaxy colour excesses, we use the colour-colour curve method with the $V!-!I$ versus $B!-!V$ as colour combination. We calibrate the PMM using four SNe II in galaxies having Tip of the Red Giant Branch distances. Among our 24 SNe II, nine are at $cz>2000$ km s$^{-1}$, which we use to construct Hubble diagrams (HDs). To further explore the PMM distance precision, we include into HDs the four SNe used for calibration and other two in galaxies with Cepheid and SN Ia distances. With a set of 15 SNe II we obtain a HD rms of 0.13 mag for the $J$-band, which compares to the rms of 0.15-0.26 mag for optical bands. This reflects the benefits of measuring PMM distances with near-IR instead of optical photometry. With the evidence we have, we can set the PMM distance precision with $J$-band below 10 per cent with a confidence level of 99 per cent.
The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.
We present the results of ALMA spectroscopic follow-up of a $z=6.765$ Lyman-$alpha$ emitting galaxy behind the cluster RXJ1347-1145. We report the detection of [CII]158$mu$m line fully consistent with the Lyman-$alpha$ redshift and with the peak of t he optical emission. Given the magnification of $mu=5.0 pm 0.3$ the intrinsic (corrected for lensing) luminosity of the [CII] line is $L_{[CII]} =1.4^{+0.2}_{-0.3} times 10^7L_{odot}$, which is ${sim}5$ times fainter than other detections of $zsim 7$ galaxies. The result indicates that low $L_{[CII]}$ in $zsim 7$ galaxies compared to the local counterparts might be caused by their low metallicities and/or feedback. The small velocity off-set ($Delta v = 20_{-40}^{+140} rm km/s$) between the Lyman-$alpha$ and [CII] line is unusual, and may be indicative of ionizing photons escaping.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا