ترغب بنشر مسار تعليمي؟ اضغط هنا

The adaptability of physiological systems optimizes performance: new directions in augmentation

146   0   0.0 ( 0 )
 نشر من قبل Bradly Alicea
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Bradly Alicea




اسأل ChatGPT حول البحث

This paper contributes to the human-machine interface community in two ways: as a critique of the closed-loop AC (augmented cognition) approach, and as a way to introduce concepts from complex systems and systems physiology into the field. Of particular relevance is a comparison of the inverted-U (or Gaussian) model of optimal performance and multidimensional fitness landscape model. Hypothetical examples will be given from human physiology and learning and memory. In particular, a four-step model will be introduced that is proposed as a better means to characterize multivariate systems during behavioral processes with complex dynamics such as learning. Finally, the alternate approach presented herein is considered as a preferable design alternate in human-machine systems. It is within this context that future directions are discussed.

قيم البحث

اقرأ أيضاً

Human cognitive performance is critical to productivity, learning, and accident avoidance. Cognitive performance varies throughout each day and is in part driven by intrinsic, near 24-hour circadian rhythms. Prior research on the impact of sleep and circadian rhythms on cognitive performance has typically been restricted to small-scale laboratory-based studies that do not capture the variability of real-world conditions, such as environmental factors, motivation, and sleep patterns in real-world settings. Given these limitations, leading sleep researchers have called for larger in situ monitoring of sleep and performance. We present the largest study to date on the impact of objectively measured real-world sleep on performance enabled through a reframing of everyday interactions with a web search engine as a series of performance tasks. Our analysis includes 3 million nights of sleep and 75 million interaction tasks. We measure cognitive performance through the speed of keystroke and click interactions on a web search engine and correlate them to wearable device-defined sleep measures over time. We demonstrate that real-world performance varies throughout the day and is influenced by both circadian rhythms, chronotype (morning/evening preference), and prior sleep duration and timing. We develop a statistical model that operationalizes a large body of work on sleep and performance and demonstrates that our estimates of circadian rhythms, homeostatic sleep drive, and sleep inertia align with expectations from laboratory-based sleep studies. Further, we quantify the impact of insufficient sleep on real-world performance and show that two consecutive nights with less than six hours of sleep are associated with decreases in performance which last for a period of six days. This work demonstrates the feasibility of using online interactions for large-scale physiological sensing.
We design a method to optimize the global mean first-passage time (GMFPT) of multiple random walkers searching in complex networks for a general target, without specifying the property of the target node. According to the Laplace transformed formula of the GMFPT, we can equivalently minimize the overlap between the probability distribution of sites visited by the random walkers. We employ a mutation only genetic algorithm to solve this optimization problem using a population of walkers with different starting positions and a corresponding mutation matrix to modify them. The numerical experiments on two kinds of random networks (WS and BA) show satisfactory results in selecting the origins for the walkers to achieve minimum overlap. Our method thus provides guidance for setting up the search process by multiple random walkers on complex networks.
264 - Yuanbang Li 2021
With the widespread use of mobile phones, users can share their location anytime, anywhere, as a form of check-in data. These data reflect user preferences. Furthermore, the preference rules for different users vary. How to discover a users preferenc e from their related information and how to validate whether a preference model is suited to a user is important for providing a suitable service to the user. This study provides four main contributions. First, multiple preference models from different views for each user are constructed. Second, an algorithm is proposed to validate whether a preference model is applicable to the user by calculating the stability value of the users long-term check-in data for each model. Third, a unified model, i.e., a multi-channel convolutional neural network is used to characterize this applicability. Finally, three datasets from multiple sources are used to verify the validity of the method, the results of which show the effectiveness of the method.
80 - Bradly Alicea 2009
Recent developments in hybrid biological-technological systems (hybrid bionic systems) has made clear the need for evaluating ergonomic fit in such systems, especially as users first become adjusted to using such systems. This training is accompanied by physiological adaptation, and can be thought of computationally as a relative degree of matching between prosthetic devices, physiology, and behavior. Achieving performance augmentation involves two features of performance: a specific form of learning, memory, and mechanotransduction called sensorimotor learning, and physiological adaptation to novel physical information imposed by the augmented environment of hybrid bionic systems. A method borrowed from environmental medicine involving perturbing the environment for a range of internal physiological conditions was used to induce sensorimotor learning and memory associated physiological changes. In addition, features of the adult phenotype were considered as a mitigator of learning-related adaptations. Using a series of statistical tests and techniques, the results demonstrate than three forms of regulation are at work related to morphological, neural, and muscular control. A discussion of the conceptual relationship between homeostasis and adaptation will then be discussed in addition to potential applications to performance augmentation strategies.
While work in fields of CSCW (Computer Supported Collaborative Work), Psychology and Social Sciences have progressed our understanding of team processes and their effect performance and effectiveness, current methods rely on observations or self-repo rt, with little work directed towards studying team processes with quantifiable measures based on behavioral data. In this report we discuss work tackling this open problem with a focus on understanding individual differences and its effect on team adaptation, and further explore the effect of these factors on team performance as both an outcome and a process. We specifically discuss our contribution in terms of methods that augment survey data and behavioral data that allow us to gain more insight on team performance as well as develop a method to evaluate adaptation and performance across and within a group. To make this problem more tractable we chose to focus on specific types of environments, Alternate Reality Games (ARGs), and for several reasons. First, these types of games involve setups that are similar to a real-world setup, e.g., communication through slack or email. Second, they are more controllable than real environments allowing us to embed stimuli if needed. Lastly, they allow us to collect data needed to understand decisions and communications made through the entire duration of the experience, which makes team processes more transparent than otherwise possible. In this report we discuss the work we did so far and demonstrate the efficacy of the approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا