ﻻ يوجد ملخص باللغة العربية
We explore the hybridization of fundamental material resonances with the artificial resonances of metamaterials. A hybrid structure is presented in the waveguide environment that consists of a resonant magnetic material with a characteristic tuneable gyromagnetic response that is integrated into a complementary split ring resonator (CSRR) metamaterial structure. The combined structure exhibits a distinct hybrid resonance in which each natural resonance of the CSRR is split into a lower and upper resonance that straddle the frequency for which the magnetic materials permeability is zero. We provide an analytical understanding of this hybrid resonance and define an effective medium theory for the combined structure that demonstrates good agreement with numerical electromagnetic simulations. The designed structure demonstrates the potential for using a ferrimagnetic or ferromagnetic material as a means of creating a tunable metamaterial structure.
The Raman effect -- inelastic scattering of light by lattice vibrations (phonons) -- produces an optical response closely tied to a materials crystal structure. Here we show that resonant optical excitation of IR and Raman phonons gives rise to a Ram
We present a new class of artificial materials which exhibit a tailored response to the electrical component of electromagnetic radiation. These electric metamaterials (EM-MMs) are investigated theoretically, computationally, and experimentally using
We propose herein a method of material-structure integrated design for broadband absorption of dielectric metamaterial, which is achieved by combination of genetic algorithm and simulation platform. A multi-layered metamaterial absorber with an ultra
We validate that off-resonant electron transport across {it ultra-short} oligomer molecular junctions is characterised by a conductance which decays exponentially with length, and we discuss a method to determine the damping factor via the energy spe
Resonant Raman spectra (RRS) of O-H and O-D vibration and libration modes, their combinations and higher harmonics have been observed in LiTaO3 polycrystalline thin films. RRS peaks are superimposed on photoluminescence (PL) spectrum. Monochromatic l