ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard X-ray/soft gamma-ray Characteristics of the Persistent Emission from Magnetars

146   0   0.0 ( 0 )
 نشر من قبل Lucien Kuiper
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper the current status of high-energy research on the hard X-ray characteristics of the persistent emission from magnetars is reviewed. Focus is put on recent intriguing results for 1RXS J1708-40, from phase resolved spectral analysis over a 2 decades wide energy band (~3-300 keV) combining contemporaneous RXTE, XMM and INTEGRAL data. For 1E 1841-045 and SGR 1806-10 we also present updated results. The perspective for future MAXI observations for this source class is also addressed.

قيم البحث

اقرأ أيضاً

252 - Sheridan J. Lloyd 2020
Axion-like-particles (ALPs) emitted from the core of a magnetar can convert to photons in its magnetosphere. The resulting photon flux is sensitive to the product of $(i)$ the ALP-nucleon coupling $G_{an}$ which controls the production cross section in the core and $(ii)$ the ALP-photon coupling $g_{agamma gamma}$ which controls the conversion in the magnetosphere. We study such emissions in the soft-gamma-ray range (300 keV to 1 MeV), where the ALP spectrum peaks and astrophysical backgrounds from resonant Compton upscattering are expected to be suppressed. Using published quiescent soft-gamma-ray flux upper limits in 5 magnetars obtained with $CGRO$ COMPTEL and $INTEGRAL$ SPI/IBIS/ISGRI, we put limits on the product of the ALP-nucleon and ALP-photon couplings. We also provide a detailed study of the dependence of our results on the magnetar core temperature. We further show projections of our result for future $Fermi$-GBM observations. Our results motivate a program of studying quiescent soft-gamma-ray emission from magnetars with the $Fermi$-GBM.
High energy emissions from supernovae (SNe), originated from newly formed radioactive species, provide direct evidence of nucleosynthesis at SN explosions. However, observational difficulties in the MeV range have so far allowed the signal detected o nly from the extremely nearby core-collapse SN 1987A. No solid detection has been reported for thermonuclear SNe Ia, despite the importance of the direct confirmation of the formation of 56Ni, which is believed to be a key ingredient in their nature as distance indicators. In this paper, we show that the new generation hard X-ray and soft gamma-ray instruments, on board Astro-H and NuStar, are capable of detecting the signal, at least at a pace of once in a few years, opening up this new window for studying SN explosion and nucleosynthesis.
105 - E. Ford , P. Kaaret , M. Tavani 1996
We have detected transient X-ray activity from the X-ray burster 4U~0614+091 simultaneously with BATSE/CGRO (20-100 keV) and ASM/RXTE (1-12 keV). The peak fluxes reach approximately 40 mCrab in both instruments over a period of about 20 days. The var iable emission shows a clear anticorrelation of the hard X-ray flux with the soft X-ray count rate. The observed anticorrelation is another clear counterexample to the notion that only black hole binaries exhibit such correlations. The individual spectra during this period can be fit by power laws with photon indices 2.2+-0.3 (ASM) and 2.7+-0.4 (BATSE), while the combined spectra can be described by a single power law with index 2.09+-0.08. BATSE and the ASM/RXTE are a good combination for monitoring X-ray sources over a wide energy band.
Emission mechanism of the magnetars is still controversial while various observational and theoretical studies have been made. In order to investigate mechanisms of both the persistent X-ray emission and the burst emission of the magnetars, we have p roposed a model that the persistent X-ray emission consists of numerous micro-bursts of various sizes. If this model is correct, intensity Root Mean Square (RMS) variations of the persistent emission exceed the values expected from the Poisson distribution. Using $Suzaku$ archive data of 11 magnetars (22 observations), the RMS intensity variations were calculated from 0.2 keV to 70 keV. As a result, we found significant excess RMS intensity variations from all the 11 magnetars. We suppose that numerous mircro-bursts constituting the persistent X-ray emission cause the observed variations, suggesting that the persistent X-ray emission and the burst emission have identical emission mechanisms. In addition, we found that the RMS intensity variations clearly increase toward higher energy bands for 4 magnetars (6 observations). The energy dependent RMS intensity variations imply that the soft thermal component and the hard X-ray component are emitted from different regions far apart from each other.
128 - E. V. Gotthelf , K. Mori , E. Aliu 2016
We present NuSTAR hard X-ray observations of Sh 2-104, a compact HII region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1 +/- 1.0)E22 cm^-2 and photon index Gamma = 2.1 +/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (< 43% modulation), this object is likely a background AGN rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV suggesting an optically obscured galaxy cluster at z = 0.19 +/- 0.02 (d = 800 Mpc) and Lx = 1.2E44 erg/s. Follow-up Chandra observations of Sh 2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37. We also show that the putative VERITAS gamma-ray excess south of Sh 2-104 is most likely associated with the newly discovered Fermi pulsar PSR J2017+3625 and not the HII region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا