ترغب بنشر مسار تعليمي؟ اضغط هنا

Planetary microlensing signals from the orbital motion of the source star around the common barycentre

39   0   0.0 ( 0 )
 نشر من قبل Martin Dominik
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With several detections, the technique of gravitational microlensing has proven useful for studying planets that orbit stars at Galactic distances, and it can even be applied to detect planets in neighbouring galaxies. So far, planet detections by microlensing have been considered to result from a change in the bending of light and the resulting magnification caused by a planet around the foreground lens star. However, in complete analogy to the annual parallax effect caused by the revolution of the Earth around the Sun, the motion of the source star around the common barycentre with an orbiting planet can also lead to observable deviations in microlensing light curves that can provide evidence for the unseen companion. We discuss this effect in some detail and study the prospects of microlensing observations for revealing planets through this alternative detection channel. Given that small distances between lens and source star are favoured, and that the effect becomes nearly independent of the source distance, planets would remain detectable even if their host star is located outside the Milky Way with a sufficiently good photometry (exceeding present-day technology) being possible. From synthetic light curves arising from a Monte-Carlo simulation, we find that the chances for such detections are not overwhelming and appear practically limited to the most massive planets (at least with current observational set-ups), but they are large enough for leaving the possibility that one or the other signal has already been observed. However, it may remain undetermined whether the planet actually orbits the source star or rather the lens star, which leaves us with an ambiguity not only with respect to its location, but also to its properties.

قيم البحث

اقرأ أيضاً

We report the discovery of a planet --- OGLE-2014-BLG-0676Lb --- via gravitational microlensing. Observations for the lensing event were made by the MOA, OGLE, Wise, RoboNET/LCOGT, MiNDSTEp and $mu$FUN groups. All analyses of the light curve data fav our a lens system comprising a planetary mass orbiting a host star. The most favoured binary lens model has a mass ratio between the two lens masses of $(4.78 pm 0.13)times 10^{-3}$. Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a $3.09_{-1.12}^{+1.02}$ M_jup planet orbiting a $0.62_{-0.22}^{+0.20}$ M_sun host star at a deprojected orbital separation of $4.40_{-1.46}^{+2.16}$ AU. The distance to the lens system is $2.22_{-0.83}^{+0.96}$ kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discovered using gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.
We present the analysis of microlensing event MOA-2010-BLG-117, and show that the light curve can only be explained by the gravitational lensing of a binary source star system by a star with a Jupiter mass ratio planet. It was necessary to modify sta ndard microlensing modeling methods to find the correct light curve solution for this binary-source, binary-lens event. We are able to measure a strong microlensing parallax signal, which yields the masses of the host star, $M_* = 0.58pm 0.11 M_odot$, and planet $m_p = 0.54pm 0.10 M_{rm Jup}$ at a projected star-planet separation of $a_perp = 2.42pm 0.26,$AU, corresponding to a semi-major axis of $a = 2.9{+1.6atop -0.6},$AU. Thus, the system resembles a half-scale model of the Sun-Jupiter system with a half-Jupiter mass planet orbiting a half-solar mass star at very roughly half of Jupiters orbital distance from the Sun. The source stars are slightly evolved, and by requiring them to lie on the same isochrone, we can constrain the source to lie in the near side of the bulge at a distance of $D_S = 6.9 pm 0.7,$kpc, which implies a distance to the planetary lens system of $D_L = 3.5pm 0.4,$kpc. The ability to model unusual planetary microlensing events, like this one, will be necessary to extract precise statistical information from the planned large exoplanet microlensing surveys, such as the WFIRST microlensing survey.
125 - E. Bachelet , I.-G. Shin , C. Han 2012
Microlensing detections of cool planets are important for the construction of an unbiased sample to estimate the frequency of planets beyond the snow line, which is where giant planets are thought to form according to the core accretion theory of pla net formation. In this paper, we report the discovery of a giant planet detected from the analysis of the light curve of a high-magnification microlensing event MOA-2010-BLG-477. The measured planet-star mass ratio is $q=(2.181pm0.004)times 10^{-3}$ and the projected separation is $s=1.1228pm0.0006$ in units of the Einstein radius. The angular Einstein radius is unusually large $theta_{rm E}=1.38pm 0.11$ mas. Combining this measurement with constraints on the microlens parallax and the lens flux, we can only limit the host mass to the range $0.13<M/M_odot<1.0$. In this particular case, the strong degeneracy between microlensing parallax and planet orbital motion prevents us from measuring more accurate host and planet masses. However, we find that adding Bayesian priors from two effects (Galactic model and Keplerian orbit) each independently favors the upper end of this mass range, yielding star and planet masses of $M_*=0.67^{+0.33}_{-0.13} M_odot$ and $m_p=1.5^{+0.8}_{-0.3} M_{rm JUP}$ at a distance of $D=2.3pm0.6$ kpc, and with a semi-major axis of $a=2^{+3}_{-1}$ AU. Finally, we show that the lens mass can be determined from future high-resolution near-IR adaptive optics observations independently from two effects, photometric and astrometric.
We present a detailed study of the binary central star of the planetary nebula ETHOS 1 (PN G068.1+11.0). Simultaneous modelling of light and radial velocity curves reveals the binary to comprise a hot and massive pre-white-dwarf with an M-type main-s equence companion. A good fit to the observations was found with a companion that follows expected mass-temperature-radius relationships for low-mass stars, indicating that despite being highly irradiated it is consistent with not being significantly hotter or larger than a typical star of the same mass. Previous modelling indicated that ETHOS 1 may comprise the first case where the orbital plane of the central binary does not lie perpendicular to the nebular symmetry axis, at odds with the expectation that the common envelope is ejected in the orbital plane. We find no evidence for such a discrepancy, deriving a binary inclination in agreement with that of the nebula as determined by spatio-kinematic modelling. This makes ETHOS 1 the ninth post-common-envelope planetary nebula in which the binary orbital and nebular symmetry axes have been shown to be aligned, with as yet no known counter-examples. The probability of finding such a correlation by chance is now less than 0.00002%.
73 - Inwoo Han , B. C. Lee , K. M. Kim 2009
Aims: Our primary goal is to search for planets around intermediate mass stars. We are also interested in studying the nature of radial velocity (RV) variations of K giant stars. Methods: We selected about 55 early K giant (K0 - K4) stars brighter than fifth magnitude that were observed using BOES, a high resolution spectrograph attached to the 1.8 m telescope at BOAO (Bohyunsan Optical Astronomy Observatory). BOES is equipped with $I_2$ absorption cell for high precision RV measurements. Results: We detected a periodic radial velocity variations in the K0 III star gam1leo with a period of P = 429 days. An orbital fit of the observed RVs yields a period of P = 429 days, a semi-amplitude of K = 208 mps, and an eccentricity of e = 0.14. To investigate the nature of the RV variations, we analyzed the photometric, CaII $lambda$ 8662 equivalent width, and line-bisector variations of gam1leo. We conclude that the detected RV variations can be best explained by a planetary companion with an estimated mass of m $sin i = 8.78 M_{Jupiter}$ and a semi-major axis of $a = 1.19$ AU, assuming a stellar mass of 1.23 Msun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا