ترغب بنشر مسار تعليمي؟ اضغط هنا

The inhomogeneous response across the solar disc of unresolved Doppler velocity observations

37   0   0.0 ( 0 )
 نشر من قبل Anne-Marie Broomhall
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. M. Broomhall




اسأل ChatGPT حول البحث

Unresolved Doppler velocity measurements are not homogenous across the solar disc (Brookes et al. 1978). We consider one cause of the inhomogeneity that originates from the BiSON instrumentation itself: the intensity of light observed from a region on the solar disc is dependent on the distance between that region on the image of the solar disc formed in the instrument and the detector. The non-uniform weighting affects the realization of the solar noise and the amplitudes of the solar oscillations observed by a detector. An offset velocity, which varies with time, is observed in BiSON data and has consequences for the long-term stability of observations. We have attempted to model, in terms of the inhomogeneous weighting, the average observed offset velocity.

قيم البحث

اقرأ أيضاً

The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the Interface Region Imaging Spectrograph (IRIS) at the solar limb reveal a plethora of short, low lying loops or loop segments at transition-region temperatures that vary rapidly, on the timescales of minutes. We argue that the existence of these loops solves a long standing observational mystery. At the same time, based on comparison with numerical models, this detection sheds light on a critical piece of the coronal heating puzzle.
Imaging systems based on a narrow-band tunable filter are used to obtain Doppler velocity maps of solar features. These velocity maps are created by taking the difference between the blue- and red-wing intensity images of a chosen spectral line. This method has the inherent assumption that these two images are obtained under identical conditions. With the dynamical nature of the solar features as well as the Earths atmosphere, systematic errors can be introduced in such measurements. In this paper, a quantitative estimate of the errors introduced due to variable seeing conditions for ground-based observations is simulated and compared with real observational data for identifying their reliability. It is shown, under such conditions, that there is a strong cross-talk from the total intensity to the velocity estimates. These spurious velocities are larger in magnitude for the umbral regions compared to the penumbra or quiet-sun regions surrounding the sunspots. The variable seeing can induce spurious velocities up to about 1 km/s It is also shown that adaptive optics, in general, helps in minimising this effect.
Damped Doppler shift oscillations have been observed in emission lines from ions formed at flare temperatures with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory and with the Bragg Cryst al Spectrometer on Yohkoh. This Letter reports the detection of low-amplitude damped oscillations in coronal emission lines formed at much lower temperatures observed with the EUV Imaging Spectrometer on the Hinode satellite. The oscillations have an amplitude of about 2 km/s, and a period of around 35 min. The decay times show some evidence for a temperature dependence with the lowest temperature of formation emission line (Fe XII 195.12 Angstroms) exhibiting a decay time of about 43 min, while the highest temperature of formation emission line (Fe XV 284.16 Angstroms) shows no evidence for decay over more than two periods of the oscillation. The data appear to be consistent with slow magnetoacoustic standing waves, but may be inconsistent with conductive damping.
58 - John T. Mariska 2005
Oscillations in solar coronal loops appear to be a common phenomenon. Transverse and longitudinal oscillations have been observed with both the Transition Region and Coronal Explorer and Extreme Ultraviolet Imaging Telescope imaging experiments. Damp ed Doppler shift oscillations have been observed in emission lines from ions formed at flare temperatures with the Solar Ultraviolet Measurements of Emitted Radiation Spectrometer. These observations provide valuable diagnostic information on coronal conditions and may help refine our understanding of coronal heating mechanisms. I have initiated a study of the time dependence of Doppler shifts measured during flares with the Bragg Crystal Spectrometer (BCS) on Yohkoh. This Letter reports the detection of oscillatory behavior in Doppler shifts measured as a function of time in the emission lines of S XV and Ca XIX. For some flares, both lines exhibit damped Doppler shift oscillations with amplitudes of a few km/s and periods and decay times of a few minutes. The observations appear to be consistent with transverse oscillations. Because the BCS observed continuously for almost an entire solar cycle, it provides numerous flare data sets, which should permit an excellent characterization of the average properties of the oscillations.
We present a method to derive outflow velocities in the solar corona using different data sets including solar wind mass flux coming from the SWAN/SOHO instrument, electron density values from LASCO-C2 and interplanetary solar wind velocities derived from ground-based Interplanetary Scintillation Observations (IPS). In a first step, we combine the LASCO electron densities at 6 solar radii and the IPS velocities, and compare the product to the SWAN mass fluxes. It is found that this product represents the actual mass flux at 6 solar radii for the fast wind, but not for the slow wind. In regions dominated by the slow wind, the fluxes derived from SWAN are systematically smaller. This is interpreted as a proof that the fast solar wind has reached its terminal velocity at about 6 solar radii and expands with constant velocity beyond this distance. On the contrary, the slow solar wind has reached only half of its terminal value and is thus accelerated further out. In a second step, we combine the LASCO-C2 density profiles and the SWAN flux data to derive velocity profiles in the corona between 2.5 and 6 solar radii. Such profiles can be used to test models of the acceleration mechanism of the fast solar wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا