ﻻ يوجد ملخص باللغة العربية
Current-induced magnetic domain wall motion at zero magnetic field is observed in the permalloy layer of a spin-valve-based nanostripe using photoemission electron microscopy. The domain wall movement is hampered by pinning sites, but in between them high domain wall velocities (exceeding 150 m/s) are obtained for current densities well below $10^{12} unit{A/m^2}$, suggesting that these trilayer systems are promising for applications in domain wall devices in case of well controlled pinning positions. Vertical spin currents in these structures provide a potential explanation for the increase in domain wall velocity at low current densities.
We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by el
Domain wall motion induced by nanosecond current pulses in nanostripes with perpendicular magnetic anisotropy (Pt/Co/AlO$_x$) is shown to exhibit negligible inertia. Time-resolved magnetic microscopy during current pulses reveals that the domain wall
Domain-wall magnetoresistance and low-frequency noise have been studied in epitaxial antiferromagnetically-coupled [Fe/Cr(001)]_10 multilayers and ferromagnetic Co line structures as a function of DC current intensity. In [Fe/Cr(001)]_10 multilayers
Due to the difficulty in detecting and manipulating magnetic states of antiferromagnetic materials, studying their switching dynamics using electrical methods remains a challenging task. In this work, by employing heavy metal/rare earth-transition me
Active manipulation of spin waves is essential for the development of magnon-based technologies. Here, we demonstrate programmable spin-wave filtering by resetting the spin structure of a pinned 90$^circ$ N{e}el domain wall in a continuous CoFeB film