ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for Merger-Driven Activity in the Clustering of High Redshift Quasars

37   0   0.0 ( 0 )
 نشر من قبل Stuart Wyithe
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, a very large clustering length has been measured for quasars at a redshift of z~4. In combination with the observed quasar luminosity function we assess the implications of this clustering for the relationship between quasar luminosity and dark matter halo mass. Our analysis allows for non-linearity and finite scatter in the relation between quasar luminosity and halo mass, as well as a luminosity dependent quasar lifetime. The additional novel ingredient in our modelling is the allowance for an excess in the observed bias over the underlying halo bias owing to the merger driven nature of quasar activity. We find that the observations of clustering and luminosity function can be explained only if both of the following conditions hold: (i) The luminosity to halo mass ratio increases with halo mass; (ii) The observed clustering amplitude is in excess of that expected solely from halo bias. The latter result is statistically significant at the 99% level. Taken together, the observations provide compelling evidence for merger driven quasar activity, with a black-hole growth that is limited by feedback. In difference from previous analyses, we show that there could be scatter in the luminosity halo mass relation of up to 1 dex, and that quasar clustering can not be used to estimate the quasar lifetime.

قيم البحث

اقرأ أيضاً

(Abridged) We study the two-point correlation function of a uniformly selected sample of 4,426 luminous optical quasars with redshift $2.9 le zle 5.4$ selected over 4041 deg$^2$ from the Fifth Data Release of the Sloan Digital Sky Survey. For a real- space correlation function of the form $xi(r)=(r/r_0)^{-gamma}$, the fitted parameters in comoving coordinates are $r_0 = 15.2 pm 2.7 h^{-1}$ Mpc and $gamma = 2.0 pm 0.3$, over a scale range $4le r_ple 150 h^{-1}$ Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their $z approx 1.5$ counterparts, which have a comoving clustering length $r_0 approx 6.5 h^{-1}$ Mpc. Dividing our sample into two redshift bins: $2.9le zle 3.5$ and $zge 3.5$, and assuming a power-law index $gamma=2.0$, we find a correlation length of $r_0 = 16.9 pm 1.7 h^{-1}$ Mpc for the former, and $r_0 = 24.3 pm 2.4 h^{-1}$ Mpc for the latter. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range $4sim 50$ Myr for quasars with $2.9le zle 3.5$; and $30sim 600$ Myr for quasars with $zge 3.5$. The corresponding duty cycles are $0.004sim 0.05$ for the lower redshift bin and $0.03sim 0.6$ for the higher redshift bin. The minimum mass of halos in which these quasars reside is $2-3times 10^{12} h^{-1}M_odot$ for quasars with $2.9le zle 3.5$ and $4-6times 10^{12} h^{-1}M_odot$ for quasars with $zge 3.5$.
The quasar mode of Active Galactic Nuclei (AGN) in the high-redshift Universe is routinely observed in gas-rich galaxies together with large-scale AGN-driven winds. It is crucial to understand how photons emitted by the central AGN source couple to t he ambient interstellar-medium to trigger large-scale outflows. By means of radiation-hydrodynamical simulations of idealised galactic discs, we study the coupling of photons with the multiphase galactic gas, and how it varies with gas cloud sizes, and the radiation bands included in the simulations, which are ultraviolet (UV), optical, and infrared (IR). We show how a quasar with a luminosity of $10^{46}$ erg/s can drive large-scale winds with velocities of $10^2-10^3$ km/s and mass outflow rates around $10^3$ M$_odot$/yr for times of order a few million years. Infrared radiation is necessary to efficiently transfer momentum to the gas via multi-scattering on dust in dense clouds. However, IR multi-scattering, despite being extremely important at early times, quickly declines as the central gas cloud expands and breaks up, allowing the radiation to escape through low gas density channels. The typical number of multi-scattering events for an IR photon is only about a quarter of the mean optical depth from the center of the cloud. Our models account for the observed outflow rates of $sim$500-1000 M$_odot$/yr and high velocities of $sim 10^3$ km/s, favouring winds that are energy-driven via extremely fast nuclear outflows, interpreted here as being IR-radiatively-driven winds.
138 - John D. Timlin 2017
We present a measurement of the two-point autocorrelation function of photometrically-selected, high-$z$ quasars over $sim$ 100 deg$^2$ on the Sloan Digitial Sky Survey Stripe 82 field. Selection is performed using three machine-learning algorithms, trained on known high-$z$ quasar colors, in a six-dimensional, optical/mid-infrared color space. Optical data from the Sloan Digitial Sky Survey is combined with overlapping deep mid-infrared data from the emph{Spitzer} IRAC Equatorial Survey and the emph{Spitzer}-HETDEX Exploratory Large-area survey. The selected quasar sample consists of 1378 objects and contains both spectroscopically-confirmed quasars and photometrically-selected quasar candidates. These objects span a redshift range of $2.9 leq z leq 5.1$ and are generally fainter than $i=20.2$; a regime which has lacked sufficient number density to perform autocorrelation function measurements of photometrically-classified quasars. We compute the angular correlation function of these data, marginally detecting quasar clustering. We fit a single power-law with an index of $delta = 1.39 pm 0.618$ and amplitude of $theta_0 = 0.71 pm 0.546$ arcmin. A dark-matter model is fit to the angular correlation function to estimate the linear bias. At the average redshift of our survey ($langle z rangle = 3.38$) the bias is $b = 6.78 pm 1.79$. Using this bias, we calculate a characteristic dark-matter halo mass of 1.70--9.83$times 10^{12}h^{-1} M_{odot}$. Our bias estimate suggests that quasar feedback intermittently shuts down the accretion of gas onto the central super-massive black hole at early times. If confirmed, these results hint at a level of luminosity dependence in the clustering of quasars at high-$z$.
While major mergers have long been proposed as a driver of both AGN activity and the M-sigma relation, studies of moderate to high redshift Seyfert-luminosity AGN hosts have found little evidence for enhanced rates of interactions. However, both theo ry and observation suggest that while these AGN may be fueled by stochastic accretion and secular processes, high-luminosity, high-redshift, and heavily obscured AGN are the AGN most likely to be merger-driven. To better sample this population of AGN, we turn to infrared selection in the CANDELS/COSMOS field. Compared to their lower-luminosity and less obscured X-ray-only counterparts, IR-only AGN (luminous, heavily obscured AGN) are more likely to be classified as either irregular (50$^{+12}_{-12}$% vs. 9$^{+5}_{-2}$%) or asymmetric (69$^{+9}_{-13}$% vs. 17$^{+6}_{-4}$%) and are less likely to have a spheroidal component (31$^{+13}_{-9}$% vs. 77$^{+4}_{-6}$%). Furthermore, IR-only AGN are also significantly more likely than X-ray-only AGN (75$^{+8}_{-13}$% vs. 31$^{+6}_{-6}$%) to be classified either as interacting or merging in a way that significantly disturbs the host galaxy or disturbed though not clearly interacting or merging, which potentially represents the late stages of a major merger. This suggests that while major mergers may not contribute significantly to the fueling of Seyfert luminosity AGN, interactions appear to play a more dominant role in the triggering and fueling of high-luminosity heavily obscured AGN.
403 - Minjin Kim 2013
We present near-infrared spectra of young radio quasars [P(1.4GHz) ~ 26-27 W/Hz] selected from the Wide-Field Infrared Survey Explorer. The detected objects have typical redshifts of z ~ 1.6-2.5 and bolometric luminosities ~ 10^47 erg/s. Based on the intensity ratios of narrow emission lines, we find that these objects are mainly powered by active galactic nuclei (AGNs), although star formation contribution cannot be completely ruled out. The host galaxies experience moderate levels of extinction, A(V) ~ 0-1.3 mag. The observed [O III] luminosities and rest-frame J-band magnitudes constrain the black hole masses to lie in the range ~ 10^8.9-10^9.7 solar mass. From the empirical correlation between black hole mass and host galaxy mass, we infer stellar masses of ~ 10^11.3-10^12.2 solar mass. The [O III] line is exceptionally broad, with full width at half maximum ~1300 to 2100 km/s, significantly larger than that of ordinary distant quasars. We argue that these large line widths can be explained by jet-induced outflows, as predicted by theoretical models of AGN feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا