ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of nodal quasiparticles in underdoped YBa2Cu3O6+y probed by penetration depth and microwave spectroscopy

232   0   0.0 ( 0 )
 نشر من قبل Wendell Huttema
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution measurements of superfluid density and broadband quasiparticle conductivity have been used to probe the low energy excitation spectrum of nodal quasiparticles in underdoped YBCO. Penetration depth is measured to temperatures as low as 0.05 K. Microwave conductivity is measured from 0.1 to 20 GHz and is a direct probe of zero-energy quasiparticles. The data are compared with predictions for a number of theoretical scenarios that compete with or otherwise modify pure d-wave superconductivity, in particular commensurate and incommensurate spin and charge density waves; d + i s and d + i d superconductivity; circulating current phases; and the BCS--BEC crossover. We conclude that the data are consistent with a pure d-wave state in the presence of a small amount of strong scattering disorder, and are able to rule out most candidate competing states either completely, or to a level set by the energy scale of the disorder, ~ 4 K. Commensurate spin and charge density orders, however, are not expected to alter the nodal spectrum and therefore cannot be excluded.

قيم البحث

اقرأ أيضاً

171 - D. Fournier , G. Levy , Y. Pennec 2010
Arguably the most intriguing aspect of the physics of cuprates is the close proximity between the record high-Tc superconductivity (HTSC) and the antiferromagnetic charge-transfer insulating state driven by Mott-like electron correlations. These are responsible for the intimate connection between high and low-energy scale physics, and their key role in the mechanism of HTSC was conjectured very early on. More recently, the detection of quantum oscillations in high-magnetic field experiments on YBa2Cu3O6+x (YBCO) has suggested the existence of a Fermi surface of well-defined quasiparticles in underdoped cuprates, lending support to the alternative proposal that HTSC might emerge from a Fermi liquid across the whole cuprate phase diagram. Discriminating between these orthogonal scenarios hinges on the quantitative determination of the elusive quasiparticle weight Z, over a wide range of hole-doping p. By means of angle-resolved photoemission spectroscopy (ARPES) on in situ doped YBCO, and following the evolution of bilayer band-splitting, we show that the overdoped metal electronic structure (0.25<p<0.37) is in remarkable agreement with density functional theory and the Z=2p/(p+1) mean-field prediction. Below p~0.10-0.15, we observe the vanishing of the nodal quasiparticle weight Z_N; this marks a clear departure from Fermi liquid behaviour and -- consistent with dynamical mean-field theory -- is even a more rapid crossover to the Mott physics than expected for the doped resonating valence bond (RVB) spin liquid.
We report measurements of the temperature dependence of the magnetic penetration depth lambda(T) in non-centrosymmetric superconductor Re_3W. We employed two experimental techniques: extraction of lambda(T) from magnetic {em dc}-susceptibility, measu red on a powder sample, and the rf tunnel diode resonator technique, where a bulk polycrystalline sample was used. The results of both techniques agree: the temperature dependence of the penetration depth can be well described by weak-coupling, dirty-limit, s-wave BCS theory where we obtain $Delta(0)/k_BT_C=1.76$. No evidence for unconventional pairing resulting from the absence of the inversion symmetry is found.
We report quantum oscillations in underdoped YBa2Cu3O6.56 over a significantly large range in magnetic field extending from 24 to 101 T, enabling three well-spaced low frequencies at 440 T, 532 T, and 620 T to be clearly resolved. We show that a smal l nodal bilayer coupling that splits a nodal pocket into bonding and antibonding orbits yields a sequence of frequencies, F0 - {Delta}F, F0, and F0 + {Delta}F and accompanying beat pattern similar to that observed experimentally, on invoking magnetic breakdown tunneling at the nodes. The relative amplitudes of the multiple frequencies observed experimentally in quantum oscillation measurements are shown to be reproduced using a value of nodal bilayer gap quantitatively consistent with that measured in photoemission experiments in the underdoped regime.
The mystery of the normal state in the underdoped cuprates has deepened with the use of newer and complementary experimental probes. While photoemission studies have revealed solely `Fermi arcs centered on nodal points in the Brillouin zone at which holes aggregate upon doping, more recent quantum oscillation experiments have been interpreted in terms of an ambipolar Fermi surface, that includes sections containing electron carriers located at the antinodal region. To address the question of whether an ambipolar Fermi surface truly exists, here we utilize measurements of the second harmonic quantum oscillations, which reveal that the amplitude of these oscillations arises mainly from oscillations in the chemical potential, providing crucial information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In particular, the detailed relationship between the second harmonic amplitude and the fundamental amplitude of the quantum oscillations leads us to the conclusion that there exists only a single underlying quasi-two dimensional Fermi surface pocket giving rise to the multiple frequency components observed via the effects of warping, bilayer splitting and magnetic breakdown. A range of studies suggest that the pocket is most likely associated with states near the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high magnetic fields.
Fine questions our interpretation of unidirectional-stripes over bidirectional-checkerboard, and illustrates his criticism by simulating a momentum space structure consistent with our data and corresponding to a checkerboard-looking real space densit y. Here we use a local rotational-symmetry analysis to demonstrate that the simulated image is in actuality composed of locally unidirectional modulations of the charge density, consistent with our original conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا