ﻻ يوجد ملخص باللغة العربية
The evolution of the magnetization in (Cd,Mn)Te quantum wells after a short pulse of magnetic field was determined from the giant Zeeman shift of spectroscopic lines. The dynamics in absence of magnetic field was found to be up to three orders of magnitude faster than that at 1 T. Hyperfine interaction and strain are mainly responsible for the fast decay. The influence of a hole gas is clearly visible: at zero field anisotropic holes stabilize the system of Mn ions, while in a magnetic field of 1 T they are known to speed up the decay by opening an additional relaxation channel.
We study optical pumping of resident electron spins under resonant excitation of trions in n-type CdTe/(Cd,Mg)Te quantum wells subject to a transverse magnetic field. In contrast to the comprehensively used time-resolved pump-probe techniques with po
We present an absorption study of the neutral and positively charged exciton (trion) under the influence of a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting tra
Microphotoluminescence mapping experiments were performed on a modulation doped (Cd,Mn)Te quantum well exhibiting carrier induced ferromagnetism. The zero field splitting that reveals the presence of a spontaneous magnetization in the low-temperature
In order to single out dominant phenomena that account for carrier-controlled magnetism in p-(Cd,Mn)Te quantum wells we have carried out magneto-optical measurements and Monte Carlo simulations of time dependent magnetization. The experimental result
In order to explain the absence of hysteresis in ferromagnetic p-type (Cd,Mn)Te quantum wells (QWs), spin dynamics was previously investigated by Monte Carlo simulations combining the Metropolis algorithm with the determination of hole eigenfunctions