ﻻ يوجد ملخص باللغة العربية
This paper addresses a rescaling behavior of some classes of global solutions to the zero surface tension Hele-Shaw problem with injection at the origin, ${Omega(t)}_{tgeq 0}$. Here $Omega(0)$ is a small perturbation of $f(B_{1}(0),0)$ if $f(xi,t)$ is a global strong polynomial solution to the Polubarinova-Galin equation with injection at the origin and we prove the solution $Omega(t)$ is global as well. We rescale the domain $Omega(t)$ so that the new domain $Omega^{}(t)$ always has area $pi$ and we consider $partialOmega^{}(t)$ as the radial perturbation of the unit circle centered at the origin for $t$ large enough. It is shown that the radial perturbation decays algebraically as $t^{-lambda}$. This decay also implies that the curvature of $partialOmega^{}(t)$ decays to 1 algebraically as $t^{-lambda}$. The decay is faster if the low Richardson moments vanish. We also explain this work as the generalization of Vondenhoffs work which deals with the case that $f(xi,t)=a_{1}(t)xi$.
The main goal of this paper is to give a precise description of rescaling behaviors of rational type global strong solutions to the Polubarinova-Galin equation. The Polubarinova-Galin equation is the reformulation of the zero surface tension Hele-Sha
This paper gives a new and short proof of existence and uniqueness of the Polubarinova-Galin equation. The existence proof is an application of the main theorem in Lins paper. Furthermore, we can conclude that every strong solution can be approximate
The Theory of (2+1) Systems based on 2D Schrodinger Operator was started by S.Manakov, B.Dubrovin, I.Krichever and S.Novikov in 1976. The Analog of Lax Pairs introduced by Manakov, has a form $L_t=[L,H]-fL$ (The $L,H,f$-triples) where $L=partial_xpar
We develop the Riemann-Hilbert problem approach to inverse scattering for the two-dimensional Schrodinger equation at fixed energy. We obtain global or gener
In this paper we continue the formal analysis of the long-time asymptotics of the homoenergetic solutions for the Boltzmann equation that we began in [18]. They have the form $fleft( x,v,tright) =gleft(v-Lleft( tright) x,tright) $ where $Lleft( trigh