ﻻ يوجد ملخص باللغة العربية
The CLIC linear collider aims at accelerating multiple bunches of electrons and positrons and colliding them at a centre of mass energy of 3 TeV. These bunches will be accelerated through X-band linacs, operating at an accelerating frequency of 12 GHz. Each beam readily excites wake-fields within the accelerating cavities of each linac. The transverse components of the wake-fields, if left unchecked, can dilute the beam emittance. The present CLIC design relies on heavy damping of these wake-fields in order to ameliorate the effects of the wake-fields on the beam emittance. Here we present initial results on simulations of the long-range wake-fields in these structures and on beam dynamics simulations. In particular, detailed simulations are performed, on emittance dilution due to beams initially injected with realistic offsets from the electrical centre of the cavities.
Energy Recovery Linacs provide high-energy beams, but decelerate those beams before dumping them, so that their energy is available for the acceleration of new particles. During this deceleration, any relative energy spread that is created at high en
This paper outlines the RF design of the CLIC (Compact Linear Collider) 30 GHz main linac accelerating structure and gives the resulting longitudinal and transverse mode properties. The critical requirement for multibunch operation, that transverse w
The feasibility of a CLIC-LHC based FEL-nucleus collider is investigated. It is shown that the proposed scheme satisfies all requirements of an ideal photon source for the Nuclear Resonance Fluorescence method. The physics potential of the proposed collider is illustrated for a beam of Pb nuclei.
Extensive beam-based feedback systems are planned as an integral part of the Next Linear Collider (NLC) control system. Wakefield effects are a significant influence on the feedback design, imposing both architectural and algorithmic constraints. Stu
A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.