ﻻ يوجد ملخص باللغة العربية
Landau Fermi liquid theory, with its pivotal assertion that electrons in metals can be simply understood as independent particles with effective masses replacing the free electron mass, has been astonishingly successful. This is true despite the Coulomb interactions an electron experiences from the host crystal lattice, its defects, and the other ~1022/cm3 electrons. An important extension to the theory accounts for the behaviour of doped semiconductors1,2. Because little in the vast literature on materials contradicts Fermi liquid theory and its extensions, exceptions have attracted great attention, and they include the high temperature superconductors3, silicon-based field effect transistors which host two-dimensional metals4, and certain rare earth compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid behaviour in all of these systems remains controversial. Here we report that an entirely different and exceedingly simple class of materials - doped small gap semiconductors near a metal-insulator transition - can also display a non-Fermi liquid state. Remarkably, a modest magnetic field functions as a switch which restores the ordinary disordered Fermi liquid. Our data suggest that we have finally found a physical realization of the only mathematically rigourous route to a non-Fermi liquid, namely the undercompensated Kondo effect, where there are too few mobile electrons to compensate for the spins of unpaired electrons localized on impurity atoms9-12.
The physics of weak itinerant ferromagnets is challenging due to their small magnetic moments and the ambiguous role of local interactions governing their electronic properties, many of which violate Fermi liquid theory. While magnetic fluctuations p
We report a systematic study of the $5d$-electron-doped system Ce(Fe$_{1-x}$Ir$_x$)$_2$Al$_{10}$ ($0 leq x leq 0.15$). With increasing $x$, the orthorhombic $b$~axis decreases slightly while accompanying changes in $a$ and $c$ leave the unit cell vol
Narrow-gap higher mobility semiconducting alloys In_{1-x}Mn_{x}Sb were synthesized in polycrystalline form and their magnetic and transport properties have been investigated. Ferromagnetic response in In_{0.98}Mn_{0.02}Sb was detected by the observat
The narrow gap semiconductor FeSi owes its strong paramagnetism to electron-correlation effects. Partial Co substitution for Fe produces a spin-polarized doped semiconductor. The spin-polarization causes suppression of the metallic reflectivity and i
CoSn is a Pauli paramagnet with relatively flat d-bands centered about 100 meV below the Fermi energy Ef. Single crystals of CoSn lightly doped with Fe, In, or Ni are investigated using x-ray and neutron scattering, magnetic susceptibility and magnet