ﻻ يوجد ملخص باللغة العربية
AIMS: Nova Cyg 2006 has been intensively observed throughout its full outburst. We investigate the energetics and evolution of the central source and of the expanding ejecta, their chemical abundances and ionization structure, and the formation of dust. METHOD: We recorded low, medium, and/or high-resolution spectra (calibrated into accurate absolute fluxes) on 39 nights, along with 2353 photometric UBVRcIc measures on 313 nights, and complemented them with IR data from the literature. RESULTS: The nova displayed initially the normal photometric and spectroscopic evolution of a fast nova of the FeII-type. Pre-maximum, principal, diffuse-enhanced, and Orion absorption systems developed in a normal way. After the initial outburst, the nova progressively slowed its fading pace until the decline reversed and a second maximum was reached (eight months later), accompanied by large spectroscopic changes. Following the rapid decline from second maximum, the nova finally entered the nebular phase and formed optically thin dust. We computed the amount of formed dust and performed a photo-ionization analysis of the emission-line spectrum during the nebular phase, which showed a strong enrichment of the ejecta in nitrogen and oxygen, and none in neon, in agreement with theoretical predictions for the estimated 1.0 Msun white dwarf in Nova Cyg 2006. The similarities with the poorly investigated V1493 Nova Aql 1999a are discussed.
Nova V2491 Cyg is one of just two detected pre-outburst in X-rays. The light curve of this nova exhibited a rare re-brightening which has been attributed by some as the system being a polar, whilst others claim that a magnetic WD is unlikely. By virt
We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1-10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imag
On 2010 Mar 10, V407 Cyg was discovered in outburst, eventually reaching V< 8 and detected by Fermi. Using medium and high resolution ground-based optical spectra, visual and Swift UV photometry, and Swift X-ray spectrophotometry, we describe the beh
SS Cyg has long been recognized as the prototype of a group of dwarf novae that show only outbursts. However, this object has entered a quite anomalous event in 2021, which at first appeared to be standstill, i.e., an almost constant luminosity state
High-dispersion spectroscopy of EY Cyg obtained from data spanning twelve years show, for the first time, the radial velocity curves from both emission and absorption line systems, yielding semi-amplitudes K_{em}=24+/- 4 km s^-1 and K_{abs}=54+/- 2 k