ترغب بنشر مسار تعليمي؟ اضغط هنا

Charm quark system in 2+1 flavor lattice QCD using the PACS-CS configurations

139   0   0.0 ( 0 )
 نشر من قبل Yusuke Namekawa
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study heavy-heavy and heavy-light quark systems for charm with a relativistic heavy quark action in 2+1 flavor lattice QCD. Configurations are generated by the PACS-CS Collaboration at the lattice spacing is $a=0.09$ fm with the lattice size of $32^3times 64$ employing the $O(a)$-improved Wilson quark action and the Iwasaki gauge action. We present preliminary results for the charmonium spectrum and the $D$ and $D_s$ meson decay constants evaluated at 3.5 MeV$< m_{rm ud}<$ 12 MeV with $m_{rm s}$ around the physical value. We investigate the dynamical quark mass dependences of the hyperfine and the orbital splittings. The decay constants are compared with the recent experimental values.



قيم البحث

اقرأ أيضاً

276 - N.Ishii 2009
Two of recent progress in lattice QCD approach to nuclear force are reported. (i) Tensor force from quenched lattice QCD: By truncating the derivative expansion of inter-nucleon potential to the strictly local terms, we obtain central force V_C(r) an d tensor force V_T(r) separately from s-wave and d-wave components of Bethe-Salpeter wave function for two nucleon state with J^P=1^+. Numerical calculation is performed with quenched QCD on 32^4 lattice using the standard plaquette action at beta=5.7 with the standard Wilson quark action with kappa=0.1640, 0.1665, 0.1678. Preliminary results show that the depths of the resulting tensor force amount to 20 to 40 MeV, which is enhanced in the light quark mass region. (ii) Nuclear force from 2+1 flavor QCD with PACS-CS gauge configuration: Preliminary full QCD results are obtained by using 2+1 flavor gauge configurations generated by PACS-CS collaboration. The resulting potential has the midium range attraction of about 30 MeV similar to the preceding quenched calculations. However, the repulsive core at short distance is significantly stronger than the corresponding quenched QCD result.
321 - Y. Namekawa 2011
We investigate the charm quark system on 2+1 flavor PACS-CS configurations. Calculations are performed at the lattice spacing $a^{-1}=2.194(10)$ GeV and the spatial extent $L=2.9$ fm with O(a)-improved Wilson fermions for the light quarks and the rel ativistic heavy fermion for the charm quark. Our dynamical $ud$ and strange quark masses and valence charm quark mass are set to their physical values. A comparison of the mass spectrum and decay constants with experiments is presented. Our results for the charm quark mass and CKM matrix elements are also reported.
We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on $32^3 times 64$ lattice. The dynamical up-down and strange quark masses are set to the physical values by usi ng the technique of reweighting to shift the quark hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals $a^{-1}=2.194(10)$ GeV and the spatial extent $L=2.88(1)$ fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain $m_{rm charm}^{msbar}(mu = m_{rm charm}^{msbar}) = 1.260(1)(6)(35)$ GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order $alpha_s^2 f(m_Q a)(a Lambda_{QCD})$, which is estimated to be a percent level if the factor $f(m_Q a)$ analytic in $m_Q a$ is of order unity. Our results for the charmed and charmed-strange meson decay constants are $f_D=226(6)(1)(5)$ MeV, $f_{D_s}=257(2)(1)(5)$ MeV, again up to the heavy quark errors of order $alpha_s^2 f(m_Q a)(a Lambda_{QCD})$. Combined with the CLEO values for the leptonic decay widths, these values yield $|V_{cd}| = 0.205(6)(1)(5)(9)$, $|V_{cs}| = 1.00(1)(1)(3)(3)$, where the last error is on account of the experimental uncertainty of the decay widths.
127 - Yoshinobu Kuramashi 2008
We report on the PACS-CS project focusing on a direct simulation of 2+1 flavor QCD on the physical point and chiral analysis of meson and baryon masses off the physical point with both the SU(2) and SU(3) chiral perturbation theories. Configurations are generated with the O(a)-improved Wilson quark action and the Iwasaki gauge action. The up-down quark is simulated by employing the DDHMC algorithm with several improvements and the UV-filtered PHMC algorithm is implemented for the strange quark. We investigate the convergence behaviors of the SU(2) and SU(3) chiral expansions up to NLO for the pseudoscalar meson sector, where the up-down quark mass ranges from 3 MeV to 24 MeV and the strange quark mass is chosen around the physical value. The fit results for the low energy constants are compared with those recently obtained by other groups. We also discuss the importance of the direct simulation at the physical point by comparing the physical quantities measured on the physical point with those estimated by the extrapolation method.
Lattice calculations of the form factors for the charm semileptonic decays D to K l nu and D to pi l nu provide inputs to direct determinations of the CKM matrix elements |V(cs)| and |V(cd)| and can be designed to validate calculations of the form fa ctors for the bottom semileptonic decays B to pi l nu and B to K l l-bar. We are using Fermilab charm (bottom) quarks and asqtad staggered light quarks on the 2+1 flavor asqtad MILC ensembles to calculate the charm (bottom) form factors. We outline improvements to the previous calculation of the charm form factors and detail our progress. We expect our current round of data production to allow us to reduce the theoretical uncertainties in |V(cs)| and |V(cd)| from 10.5% and 11%, respectively, to about 7%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا