ﻻ يوجد ملخص باللغة العربية
We have used VLT FLAMES data to constrain the uncertain physics of rotational mixing in stellar evolution models. We have simulated a population of single stars and find two groups of observed stars that cannot be explained: (1) a group of fast rotating stars which do not show evidence for rotational mixing and (2) a group of slow rotators with strong N enrichment. Binary effects and fossil magnetic fields may be considered to explain those two groups. We suggest that the element boron could be used to distinguish between rotational mixing and the binary scenario. Our single star population simulations quantify the expected amount of boron in fast and slow rotators and allow a comparison with measured nitrogen and boron abundances in B-stars.
We provide atmospheric parameters and rotational velocities of a large sample (~400) of O- and early B-type stars, analysed in a homogeneous and consistent manner, for use in constraining theoretical models. Comparison of the rotational velocities wi
Light curves and periodograms of 160 B stars observed by the TESS space mission and 29 main-sequence B stars from Kepler and K2 were used to classify the variability type. There are 114 main-sequence B stars in the TESS sample, of which 45 are classi
(Abridged) New boron abundances for seven main-sequence B-type stars are determined from HST STIS spectroscopy around the BIII 2066A line. Boron abundances provide a unique and critical test of stellar evolution models that include rotational mixing
We present ground-based 3 micron spectra of obscured Asymptotic Giant Branch (AGB) stars in the Magellanic Clouds (MCs). We identify the carbon stars on the basis of the 3.1 micron absorption by HCN and C2H2 molecules. We show evidence for the exis
The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise measurements of rotational velocities and nitrogen surface abundances of massive stars in the Magellanic Clouds. Specifically, for the first time, such abundances have been est