ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of the high z GRB 080913 and its implications on progenitors and energy extraction mechanisms

72   0   0.0 ( 0 )
 نشر من قبل Dolores Perez-Ramirez
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We present multiwavelength observations of one of the most distant gamma-ray bursts detected so far, GRB 080913. Based on these observations, we consider whether it could be classified as a short-duration GRB and discuss the implications for the progenitor nature and energy extraction mechanisms. Methods: Multiwavelength X-ray, near IR and millimetre observations were made between 20.7 hours and 16.8 days after the event. Results: Whereas a very faint afterglow was seen at the 3.5m CAHA telescope in the nIR, the X-ray afterglow was clearly detected in both Swift and XMM-Newton observations. An upper limit is reported in the mm range. We have modeled the data assuming a collimated $theta_0$ $gtrsim$ 3$^circ$ blast wave with an energy injection at 0.5 days carrying $5sim 10^{52}$ erg or approximately 12 times the initial energy of the blast wave. We find that GRB 080913 shares many of the gamma-ray diagnostics with the more recent burst GRB 090423 for being classified as short had they ocurred at low redshift. If the progenitor were a compact binary merger, it is likely composed by a NS and BH. The Blandford-Znajek (BZ) mechanism is the preferred one to extract energy from the central, maximally-rotating BH. Both the magnetic field close to the event horizon (B) and the BH mass ($M_{bh}$) are restricted within a relatively narrow range, such that $(B / 3times 10^{16} rm{G}) (M_{bh} / 7 M_odot) sim 1$. Similar constraints on the central BH hold for collapsar-like progenitor systems if the BZ-mechanism works for the system at hand.



قيم البحث

اقرأ أيضاً

We report on the detection by Swift of GRB 080913, and subsequent optical/near-infrared follow-up observations by GROND which led to the discovery of its optical/NIR afterglow and the recognition of its high-z nature via the detection of a spectral b reak between the i and z bands. Spectroscopy obtained at the ESO-VLT revealed a continuum extending down to lambda = 9400 A, and zero flux for 7500 A < lambda<9400 A, which we interpret as the onset of a Gunn-Peterson trough at z=6.695+-0.025 (95.5% conf. level), making GRB 080913 the highest redshift GRB to date, and more distant than the highest-redshift QSO. We note that many redshift indicators which are based on promptly available burst or afterglow properties have failed for GRB 080913. We report on our follow-up campaign and compare the properties of GRB 080913 with bursts at lower redshift. In particular, since the afterglow of this burst is fainter than typical for GRBs, we show that 2m-class telescopes can identify most high-redshift GRBs.
We investigate the explosion of stars with zero-age main-sequence masses between 20 and 35 solar masses and varying degrees of rotation and magnetic fields including ones commonly considered progenitors of gamma-ray bursts (GRBs). The simulations, co mbining special relativistic magnetohydrodynamics, a general relativistic approximate gravitational potential, and two-moment neutrino transport, demonstrate the viability of different scenarios for the post-bounce evolution. Having formed a highly massive proto-neutron star (PNS), several models launch successful explosions, either by the standard supernova mechanism based on neutrino heating and hydrodynamic instabilities or by magnetorotational processes. It is, however, quite common for the PNS to collapse to a black hole (BH) within a few seconds. Others might produce proto-magnetar-driven explosions. We explore several ways to describe the different explosion mechanisms. The competition between the timescales for advection of gas through the gain layer and heating by neutrinos provides an approximate explanation for models with insignificant magnetic fields. The fidelity of this explosion criterion in the case of rapid rotation can be improved by accounting for the strong deviations from spherical symmetry and mixing between pole and equator. We furthermore study an alternative description including the ram pressure of the gas falling through the shock. Magnetically driven explosions tend to arise from a strongly magnetised region around the polar axis. In these cases, the onset of the explosion corresponds to the equality between the advection timescale and the timescale for the propagation of Alfven waves through the gain layer.
Although there is strong support for the collapsar engine as the power source of long-duration gamma-ray bursts (GRBs), we still do not definitively know the progenitor of these explosions. Here we review the current set of progenitor scenarios for l ong-duration GRBs and the observational constraints on these scenarios. Examining these, we find that single-star models cannot be the only progenitor for long-duration GRBs. Several binary progenitors can match the solid observational constraints and also have the potential to match the trends we are currently seeing in the observations. Type Ib/c supernovae are also likely to be produced primarily in binaries; we discuss the relationship between the progenitors of these explosions and those of the long-duration GRBs.
We present a leptonic model on the external shock context to describe the high-energy emission of GRB 940217, GRB 941017 and GRB 970217A. We argue that the emission consists of two components, one with a similar duration of the burst, and a second, l onger-lasting GeV phase lasting hundred of seconds after the prompt phase. Both components can be described as synchrotron self-Compton emission from a reverse and forward shock respectively. For the reverse shock, we analyze the synchrotron self-Compton in the thick-shell case. The calculated fluxes and break energies are all consistent with the observed values.
156 - Paul Robertson 2015
We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10 years from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over 6 years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا