ﻻ يوجد ملخص باللغة العربية
The field of spin electronics (spintronics) was initiated by the discovery of giant magnetoresistance (GMR) for which Fert[1] and Grunberg[2] were awarded the 2007 Nobel Prize for Physics. GMR arises from differential scattering of the majority and minority spin electrons by a ferromagnet (FM) so that the resistance when the FM layers separated by non-magnetic (NM) spacers are aligned by an applied field is different to when they are antiparallel. In 1996 Slonczewski[3] and Berger[4] predicted that a large spin-polarised current could transfer spin-angular momentum and so exert a spin transfer torque (STT) sufficient to switch thin FM layers between stable magnetisation states[5] and, for even higher current densities, drive continuous precession which emits microwaves[6]. Thus, while GMR is a purely passive phenomenon which ultimately depends on the intrinsic band structure of the FM, STT adds an active element to spintronics by which the direction of the magnetisation may be manipulated. Here we show that highly non-equilibrium spin injection can modify the scattering asymmetry and, by extension, the intrinsic magnetism of a FM. This phenomenon is completely different to STT and provides a third ingredient which should further expand the range of opportunities for the application of spintronics.
Spin-transfer torque and current induced spin dynamics in spin-valve nanopillars with the free magnetic layer located between two magnetic films of fixed magnetic moments is considered theoretically. The spin-transfer torque in the limit of diffusive
Recent experimental measurements of magnetoresistance in dual spin valves [A. Aziz et al., Phys. Rev. Lett. 103, 237203 (2009)] reveal some nonlinear features of transport, which have not been observed in other systems. We propose a phenomenological
Giant magneto-Seebeck (GMS) effect was observed in Co/Cu/Co and NiFe/Cu/Co spin valves. Their Seebeck coefficients in parallel state was larger than that in antiparallel state, and GMS ratio defined as (SAP-SP)/SP could reach -9% in our case. The GMS
The spin absorption process in a ferromagnetic material depends on the spin orientation relativelyto the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateralspin-valve, we evidence and quantify a sizeable orient
For the technologically relevant spin Hall effect most theoretical approaches rely on the evaluation of the spin-conductivity tensor. In contrast, for most experimental configurations the generation of spin accumulation at interfaces and surfaces is