ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Identifications of Five INTEGRAL Hard X-ray Sources in the Galactic Plane Region

121   0   0.0 ( 0 )
 نشر من قبل Rodion Burenin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The results of optical identifications of five hard X-ray sources in the Galactic plane region from the INTEGRAL all-sky survey are presented. The X-ray data on one source (IGRJ20216+4359) are published for the first time. The optical observations were performed with 1.5-m RTT-150 telescope (TUBITAK National Observatory, Antalya, Turkey) and 6-m BTA telescope (Special Astrophysical Observatory, Nizhny Arkhyz, Russia). A blazar, three Seyfert galaxies, and a high-mass X-ray binary are among the identified sources.

قيم البحث

اقرأ أيضاً

The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) continues to successfully work in orbit after its launch in 2002. The mission provides the deepest ever survey of hard X-ray sources throughout the Galaxy at energies above 20 keV. We rep ort on a catalogue of new hard X-ray source candidates based on the latest sky maps comprising 14 years of data acquired with the IBIS telescope onboard INTEGRAL in the Galactic Plane (|b|<17.5 deg). The current catalogue includes in total 72 hard X-ray sources detected at S/N>4.7 sigma and not known to previous INTEGRAL surveys. Among them, 31 objects have also been detected in the on-going all-sky survey by the BAT telescope of the Swift observatory. For 26 sources on the list, we suggest possible identifications: 21 active galactic nuclei, two cataclysmic variables, two isolated pulsars or pulsar wind nebulae, and one supernova remnant; 46 sources from the catalogue remain unclassified.
75 - G. Belanger 2003
This letter presents the first results of an observational campaign to study the Galactic Centre with INTEGRAL. The mosaicked images obtained with the IBIS/ISGRI coded aperture instrument in the energy ranges 20-40 and 40-100 keV, give a yet unseen v iew of the high-energy sources of this region in hard X- and gamma-rays with an angular resolution of 12 arcmin (FWHM). We report on the discovery of a source, IGR J17456-2901, coincident with the Galactic Nucleus SgrA* to within 0.9 arcmin. Located at R.A.(J2000.0) = 17h45m38.5s, Dec.(J2000.0) = -29:01:15, the source is visible up to about 100 keV with a 20-100 keV luminosity at 8 kpc of (2.89 +/- 0.41) x 10^35 ergs/s. Although the new INTEGRAL source cannot unequivocally be associated to the Galactic Nucleus, this is the first report of significant hard X-ray emission from within the inner 10 arcmin of the Galaxy and a contribution from the galactic supermassive black hole itself cannot be excluded.
Within the framework of our program of assessment of the nature of unidentified or poorly known INTEGRAL sources, we present here spectroscopy of optical objects, selected through positional cross-correlation with soft X-ray detections (afforded with satellites such as Swift, ROSAT, Chandra and/or XMM-Newton) as putative counterparts of hard X-ray sources detected with the IBIS instrument onboard INTEGRAL. Using 6 telescopes of various sizes and archival data from two on-line spectroscopic surveys we are able to identify, either for the first time or independent of other groups, the nature of 20 INTEGRAL hard X-ray sources. Our results indicate that: 11 of these objects are active galactic nuclei (AGNs) at redshifts between 0.014 and 0.978, 7 of which display broad emission lines, 2 show narrow emission lines only, and 2 have unremarkable or no emission lines (thus are likely Compton thick AGNs); 5 are cataclysmic variables (CVs), 4 of which are (possibly magnetic) dwarf novae and one is a symbiotic star; and 4 are Galactic X-ray binaries (3 with high-mass companions and one with a low-mass secondary). It is thus again found that the majority of these sources are AGNs or magnetic CVs, confirming our previous findings. When possible, the main physical parameters for these hard X-ray sources are also computed using the multiwavelength information available in the literature. These identifications support the importance of INTEGRAL in the study of the hard X-ray spectrum of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of unidentified hard X-ray sources.
We have conducted low-frequency radio observations with the Giant Metrewave Radio Telescope (GMRT) of 40 new hard X-ray sources discovered by the INTEGRAL satellite. This survey was conducted in order, to study radio emissions from these sources, to provide precise position and to identify new microquasar candidates. From our observations we find that 24 of the X-ray sources have radio candidates within the INTEGRAL error circle. Based on the radio morphology, variability and information available from different wavelengths, we categorize them as seventeen Galactic sources (4 unresolved, 7 extended, 6 extended sources in diffuse region) and seven extragalactic sources (2 unresolved, 5 extended). Detailed account for seventeen of these sources was presented in earlier paper. Based on the radio data for the remaining sources at 0.61 GHz, and the available information from NVSS, DSS, 2MASS and NED, we have identified possible radio counterparts for the hard X-ray sources. The three unresolved sources, viz IGR J17303$-$0601, IGR J17464$-$3213, and IGR J18406$-$0539 are discussed in detail. These sources have been identified as X-ray binaries with compact central engine and variable in X-ray and in the radio, and are most likely microquasar candidates. The remaining fourteen sources have extended radio morphology and are either diffuse Galactic regions or extragalactic in origin.
Context. The INTEGRAL observatory operating in a hard X-ray/gamma domain has gathered a large observational data set over nine years starting in 2003. Most of the observing time was dedicated to the Galactic source population study, making possible t he deepest Galactic survey in hard X-rays ever compiled. Aims. We aim to perform a Galactic survey that can be used as the basis of Galactic source population studies, and perform mapping of the Milky Way in hard X-rays over the maximum exposure available at |b|<17.5 deg. Methods. We used sky reconstruction algorithms especially developed for the high quality imaging of INTEGRAL/IBIS data. Results. We present sky images, sensitivity maps, and catalogs of detected sources in the three energy bands 17-60, 17-35, and 35-80 keV in the Galactic plane at |b|<17.5 deg. The total number of sources in the reference 17-60 keV band includes 402 objects exceeding a 4.7 sigma detection threshold on the nine-year time-averaged map. Among the identified sources with known and tentatively identified natures, 253 are Galactic objects (108 low-mass X-ray binaries, 82 high-mass X-ray binaries, 36 cataclysmic variables, and 27 are of other types), and 115 are extragalactic objects, including 112 active galactic nuclei (AGNs) and 3 galaxy clusters. The sample of Galactic sources with S/N>4.7 sigma has an identification completeness of ~92%, which is valuable for population studies. Since the survey is based on the nine-year sky maps, it is optimized for persistent sources and may be biased against finding transients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا